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 This collection of activities is based on a weekly series of space science 
problems distributed to thousands of teachers during the 2009-2010 school year. 
They were intended for students looking for additional challenges in the math and 
physical science curriculum in grades 9 through 12. The problems were created to 
be authentic glimpses of modern science and engineering issues, often involving 
actual research data.   
 The problems were designed to be ‘one-pagers’ with a Teacher’s Guide and 
Answer Key as a second page.  This compact form was deemed very popular by 
participating teachers. For more weekly classroom activities about astronomy and 
space visit the NASA website,  

http://spacemath.gsfc.nasa.gov
 
To suggest math problem or science topic ideas, contact  the Author,  Dr. Sten 
Odenwald at           

Sten.F.Odenwald@nasa.gov 
 
 
 
 
 
Figure credits: Front Cover: Solar Magnetic Field Color representation of a three-
dimensional model of the solar corona during August and September 1996 (SOHO: 
Ultraviolet Coronograph Spectrometer) Jovian magnetic field and inner satellite orbits 
(Courtesy John Spencer, Lowell Observatory). Solar prominence (NASA/TRACE); Back 
Cover:  Diagram of magnetic field lines of Earth modeled by Dr.  Gary Glatzmaier (Los 
Alamos) and Paul Roberts (UCLA).   
 
 
 
 

This booklet was created under EPOESS-7 education grant, 
NNH08CD59C through the NASA Science Mission Directorate, and in 
collaboration with the following NASA Education and Public Outreach 

programs: IMAGE, Hinode,  and THEMIS. 
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Alignment with  Standards (AAAS Project:2061 Benchmarks). 
 
(3-5) - Quantities and shapes can be used to describe objects and events in the world around 
us. 2C/E1  --- Mathematics is the study of quantity and shape and is useful for describing events 
and solving practical problems. 2A/E1   
 
(6-8) Mathematicians often represent things with abstract ideas, such as numbers or perfectly 
straight lines, and then work with those ideas alone. The "things" from which they abstract can 
be ideas themselves; for example, a proposition about "all equal-sided triangles" or "all odd 
numbers". 2C/M1  
 
(9-12) - Mathematical modeling aids in technological design by simulating how a proposed 
system might behave. 2B/H1 ---- Mathematics provides a precise language to describe objects 
and events and the relationships among them. In addition, mathematics provides tools for 
solving problems, analyzing data, and making logical arguments. 2B/H3 ----- Much of the work of 
mathematicians involves a modeling cycle, consisting of three steps: (1) using abstractions to 
represent things or ideas, (2) manipulating the abstractions according to some logical rules, and 
(3) checking how well the results match the original things or ideas. The actual thinking need not 
follow this order. 2C/H2  
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Mathematics Topic Matrix 

Topic Problem      Numbers 
 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Inquiry  X X X  X  X X X X X X X X X    X X X X

Protractors,     X X  X X X      rulers, etc 
Numbers, X       X X X X X     patterns, 

percentages 
Averages             

Time, distance,        X X      Xspeed 
Areas and           X  volumes 

Scale   X  X X X X X X     drawings 
Geometry     X X X X X X X X X X   X   

Probability,             odds 
Scientific            X  X X X X XNotation 

Unit X  X     X     X XConversions 
Fractions             

Graph or Table     X   X X X X X      Analysis 
Solving for X        X X      X

Evaluating Fns  X X X    X X X   X  X X X X X X
Modeling      X       

Trigonometry       X X X      
Pythagorean     X  X X X X  X X   Theorem 

Vectors     X X X X X X X X X X X X X X   
Gradients         X    
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Mathematics Topic Matrix (cont'd) 



How to use this book 

  
General Approach 
 
         Teachers continue to look for ways to make math meaningful by providing students with 
problems and examples demonstrating its applications in everyday life.  Space Math offers math 
applications through one of the strongest motivators-Space. Technology makes it possible for 
students to experience the value of math, instead of just reading about it. Technology is essential 
to mathematics and science for such purposes as “access to outer space and other remote 
locations, sample collection and treatment, measurement, data collection and storage, 
computation, and communication of information.”  3A/M2 authentic assessment tools and 
examples.  NCTM Process Standards for grades k-12- Connections should enable all students to: 

• Recognize and use connections among mathematical ideas 
• Understand how mathematical ideas interconnect and build on one another to produce a 

coherent whole 
• Recognize and apply mathematics in contexts outside of mathematics 

 When instruction focuses on a small number of key areas of emphasis, students gain extended 
experience with core concepts and skills. Such experience can facilitate deep understanding, 
mathematical fluency, and an ability to generalize.  
This book is designed to be used as a supplement for teaching mathematical topics.  The 
problems can be used to enhance understanding of the mathematical concept, or as a good 
assessment of student mastery.   
 
 An integrated classroom technique provides a challenge in math and science classrooms, 
through a more intricate method for using Magnetic Math. Read the scenario that follows: 
 
Ms. Green decided to enhance her magnetism activities this year by using the Magnetic Math 
book.  She used most of the activities beginning with basic magnetism, even though her students 
seem to understand the basics of attracting and repelling of dipole magnets she decided that 
playing with objects and discovering the types of materials that are attracted to a magnet was a 
good review.  She had the students use several magnets to map the magnetic influence and 
determine how the influence of several magnetic field interact.  Then she took the students into the 
world of magnetic units of measure and watched the excitement of new discovery and the use of 
base 10.   
 
 Magnetic Math can be used as a classroom challenge activity, assessment tool, 
enrichment activity or in a more dynamic method as is explained in the above scenario.  It is 
completely up to the teacher, their preference and allotted time. The book was developed using 
related ideas, concepts, skills, and procedures that form the foundation for understanding and 
using mathematics and lasting learning. 
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Examples of Topic Strands 
 
 The problems in this book have been created to highlight interesting aspects of 
magnetism using mathematical exercises that are appropriate to the typical on-grade-level 
student taking science classes. This means that students in 8th grade will be expected to be 
familiar with topics in pre-algebra mathematics including working with decimals, fractions, 
scientific notation, statistics, basic triangle geometry and equations in one variable. Students 
in 9th and 10th grades will be expected to be familiar with concepts in Algebra I and 
Geometry, including trigonometry, working with equations with integer and fractional 
exponents, and unit conversions. Students in grades 11 and 12 will be expected to know 
Algebra I, Geometry and Algebra II basic content, and some additional advanced math 
applications not involving calculus. 
 
Grade 6-8 
 
 Students will have had a basic exposure to the concept of magnetism through hands-
on experiments such as those suggested in Labs 1-4, which allow students to map magnetic 
fields via compass or iron filings to show the standard polar geometry. To go beyond merely 
drawing magnetic fields, students must be introduced to their measurement, Problem 1, the 
two common units used (Gauss and Tesla) and their conversions. By organizing various 
phenomena in terms of their magnetic strengths, they appreciate how familiar things (e.g. 
Toy Magnets) stand in relation to other known magnetic systems much as a temperature 
scale or other physical scales. Problems 5-18 and Problems 22-23, provide an introduction 
to graphing magnetic fields in 2-dimensions using nothing more complicated than a 
compass, protractor, rectangular grid paper and an application of the Pythagorean Theorem. 
These activities highlight the vector nature of the magnetic field, but do not mention the term 
'vector' which can be an intimidating concept in this grade range. The proper treatment of 
vectors is customarily held off until Grade 9 Geometry. In Problems 11-14, students come 
into contact with the concept that Earth's magnetic field  changes in time, and use a variety 
of graphical data to estimate the rate of change (slope) of this change, and use this to make 
future forecasts. 
 
 
Grade 9-12 
 
 Students explore magnetic forces using more sophisticated mathematical tools. 
Problems 3-4 and Problems 20-21 assume that students can work with algebraic equations 
in more than one variable, and with both integer and fractional exponents to evaluate the 
strength of a magnetic field in terms of its mathematical description from a theoretical model. 
The mathematical description in terms of a dipole expresses algebraically, the Pythagorean 
Theorem in 3-dimensions, and the physical concept of magnetic pressure are used to define 
and explore various astronomical systems containing plasma and magnetic fields. Problems 
26-29 take a step-by-step approach in introducing magnetic pressure, first as an isolated 
property, then as a property combined with the gas pressure in a plasma, to study the 
equilibria of various systems such as sunspots and interstellar clouds.  
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508-Compliance 
 On August 7, 1998, President Clinton signed into law the Rehabilitation Act 
Amendments of 1998 which covers access to federally funded programs and 
services. The law applies to all Federal agencies when they develop, procure, 
maintain, or use electronic and information technology. Federal agencies must 
ensure that this technology is accessible to employees and members of the public 
with disabilities to the extent it does not pose an "undue burden." Section 508 
speaks to various means for disseminating information, including computers, 
software, and electronic office equipment.  
 Each Federal agency implements this requirement differently. NASA's 
Education Program requires that all websites and PDF documents be readable 
using a text-to-audio interpreter.  Magnetic Math technically complies with this 
requirement as a PDF file, but the user should be forewarned than no single 
document can authentically and realistically serve both the needs of sighted and 
sight-impaired students. This math guide incorporates many elements, including 
complex equations and colored images, that are difficult to convert into a useful 
experience for sight-impaired students.  It is possible, however, for sight-impaired 
students to have an acceptable qualitative experience of this topic depending on 
their special needs and classroom resources. 
 
 
SI, MKS and CGS units 
 Were applicable, we use the units that are commonly used in the various 
scientific specialties, and which make the concepts clear. For example, all 
astronomical applications of magnetism use the centimeter-gram-second (CGS) 
units because this is the unit standard adopted by this scientific discipline for the last 
century, and which is used in all of its extant literature. This may cause some 
concern to elementary students of physics who are more familiar with the meter-
kilogram-second (MKS) system. Also, some topics such as magnetic pressure have 
a far more direct and simple formulation in the CGS system than in the MKS 
system, so that the former is preferred to help students more clearly see, and 
remember, the underlying relationships. For example: 

B2

  Pm =   dy
8π

nes/cm2If magnetic field  B is expressed in Gauss (CGS) units:

 
B2

   Pm =  N
2μ0

2ewton/mIf magnetic field B is expressed in Tesla (MKS) units:  

where μ0 is a constant called the Permeability of Free Space and has a value of 
4π×10−7 Newtons·Ampere−2.  
 
 An unreasonable adherence to MKS over CGS can lead to added complexity 
and confusion. Students entering science and engineering need to be facile in 
converting between the MKS and CGS systems to accommodate the deep historical 
range of the research literature in various fields. Moreover, 1 tesla is a HUGE field 
intensity, far larger (by x100 or x1000) than any you will measure in the classroom. 
For teachers who find the use of the CGS system problematical in this guide, 
you may challenge your students to convert all CGS quantities to MKS.  

Space  Math                                                      http://spacemath.gsfc.nasa.gov 



Teacher Comments

  
"Your problems are great fillers as well as sources of interesting questions. I have even given 
one or two of your problems on a test! You certainly have made the problems a valuable 
resource!" (Chugiak High School, Alaska) 
 
"I love your problems, and thanks so much for offering them! I have used them for two years, 
and not only do I love the images, but the content and level of questioning is so appropriate for 
my high school students, they love it too. I have shared them with our math and science 
teachers, and they have told me that their students like how they apply what is being taught in 
their classes to real problems that professionals work on." (Wade Hampton High School, SC) 
 
"I recently found the Space Math problems website and I must tell you it is wonderful! I teach 
8th grade science and this is a blessed resource for me. We do a lot of math and I love how 
you have taken real information and created reinforcing problems with them. I have shared the 
website with many of my middle and high school colleagues and we are all so excited. The 
skills summary allows any of us to skim the listing and know exactly what would work for our 
classes and what will not. I cannot thank you enough. I know that the science teachers I work 
with and I love the graphing and conversion questions. The "Are U Nuts" conversion worksheet 
was wonderful! One student told me that it took doing that activity (using the unusual units) for 
her to finally understand the conversion process completely. Thank you!" (Saint Mary's Hall 
MS, Texas) 
 
"I know I’m not your usual clientele with the Space Math problems but I actually use them in a 
number of my physics classes. I get ideas for real-world problems from these in intro physics 
classes and in my astrophysics classes. I may take what you have and add calculus or 
whatever other complications happen, and then they see something other than “Consider a 
particle of mass ‘m’ and speed ‘v’ that…”  (Associate Professor of Physics) 
 
"Space Math has more up-to-date applications than are found in any textbook. Students enjoy 
real-world math problems for the math they have already learned.  Doing Space Math 
problems has encouraged some of my students to take pre-calculus and calculus so they can 
solve the more advanced problems. I learned about Space Math through an email last year. I 
was very impressed with the problems.  I assigned some of the problems to students in my 
Physics classes, printing them out to put in their interactive notebooks. I displayed other 
problems for group discussion, assigned some for homework and used some for group class 
work.  I like the diversity, the color format and having the solutions. I expect to use them even 
more next year in our new space science class. We will have 50 students in two sections."  
(Alan, High School Science Teacher) 
 
"It took time for them to make the connection between the math they learned in math class and 
applying it in the science classroom. Now I use an ELMO to project them. I have used them for 
class work and/or homework.  The math activities were in conjunction with labs and science 
concepts that were being presented.  The math helped "show" the science. Oftentimes 
students were encouraged to help and teach each other. Students began to see how math and 
science were connected. I knew the students were making the connections because they 
would comment about how much math they had to do in science.  Their confidence in both 
classes increased as they were able practice the concepts they learned in math in my science 
class." (Brenda, Technology Resource Teacher) 
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     Magnetic Math 

 
1.0 A Short Introduction to Magnetism 
 
 Many NASA resources describe the basics of magnetism, especially as it 

applies to earth's magnetic field and solar activity (see 'NASA Resources on 

Magnetism', page 40).  

 Magnetism is an ancient discovery. The earliest recorded description of 

magnetic forces occurred in China in 2637 B .C. when Emperor Hoang-ti's troops 

lost their way in heavy fog while in pursuit of Prince Tcheyeou. The Emperor 

constructed a chariot upon which stood a figure that always pointed south no 

matter how the chariot was pointed.  The Greek philosopher Thales of Miletus 

(640-546 BC) is also credited with having conducted a careful study of lodestone 

and its magnetic properties, but this did not include a knowledge of magnetic 

polarity or its directive properties within earth's magnetic field - the basis for a 

true compass.   

 At the time of Columbus, magnetic compasses for navigation had been a 

standard technology for at least several centuries, but it was on Columbus's first 

voyage in 1492 that he discovered the needle didn't point to True North (Pole 

Star) in some locations.  In fact, the deviation was as high as 10 degrees west of 

True North. To avoid an impending mutiny, it is claimed that Columbus altered 

the compass card to match the direction of the needle. This was very risky thing 

to do, because a nautical rule on the book stated that the penalty for tampering 

with a compass was that "the hand which is most used would be fastened to the 

mast by a dagger thrust through it".  (Fleming, pp. 2) 

 Substantial work on magnetism, particularly terrestrial magnetism, was  

described in 1600 by Dr. William Gilbert. In an introduction to his book De 

Magnete, Gilbert debunks many of the older ideas of the causes and properties 

of magnetism. He attacked alchemists for their obscure language, and put many 

of the legendary claims for lodestone to direct experimental  tests. One of these 

was that lodestone's power, dulled at night, could be restored by a bath in goat's 

blood. One of his most famous discoveries is that the earth is, itself, a magnet, 

which is why mariner's compasses work. He was the first to distinguish between 

____________________________________________________________ 
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     Magnetic Math 

magnetic and electrical attraction, and is credited with coining the term 

electricity. It was Descartes who ultimately made 'intangible and invisible'  

magnetic forces visible to the naked eye by inventing the iron  filing method. He 

presented this technique in his Principles of  Philosophy published in 1644, 

explaining that,  "The filings will  arrange 

themselves in lines which display to view 

the curved paths of the  filaments around 

the magnet...".  

 The pattern revealed by the iron 

filings vividly illustrated that something 

extremely well organized existed beyond 

the surface of the magnet, which was 

perhaps the origin of the magnetic force 

itself. A compass works the way it does 

because Earth has a magnetic field that looks a lot like the one in a magnet. The 

Earth's field is completely invisible, but it can be felt by a compass needle on 

Earth's surface, and it reaches thousands of miles out into space.  

 
Descarte's drawing of magnetic 
lines of force 

 

2.0  The  Earth's  Magnetic Field 

 In your classroom, you can make a magnetic field by letting a current flow 

through a piece of wire wrapped around a nail. When you attach the battery, the 

nail becomes an electromagnet and you can use it to lift paper clips. 

 Geologists are convinced that the core of the Earth is also an 

electromagnet. The powerful magnetic field generated by a dynamo process in 

the liquid outer core of Earth. The magnetic force passes out through Earth’s 

core, through the crust that we stand upon with our compasses, and enters 

space. This picture created by a computer from a mathematical model, shows 

the lines of force colored gold for a south-type polarity and blue for a north-type. 

By the time the field has reached the surface of Earth, it has weakened a lot, but 

it is still strong enough to keep your compass needles pointed towards one of its 
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poles. As you recall from grade-school science classes, magnets have two 

POLES: a North Pole and a South Pole.  Scientists call this a dipolar field. 

 There is another thing that we know 

about magnets and magnetism: When you 

put like poles together (South facing South 

or North facing North) they repel each 

other. You can feel this force of repulsion 

yourself! When you put unlike poles 

together (South facing North) you can feel 

magnetic attraction.  In the Northern 

Hemisphere, your compass needle points 

North, but if you think about it for a moment, 

you will discover that the magnetic pole in 

the Earth's Northern Hemisphere has to be 

of a South polarity. This is so, because the 

North-type magnetism of the compass 

needle has to be attracted by a South-type magnetism in the Earth in order to 

'seek out' the North Pole.  

 
 
A mathematical model of Earth's 
magnetic field near the core.  
(Courtesy: Gary Glatzmaier) 

 A common way to refer to magnetic fields is by using the term 'magnetic 
lines of force', which comes from seeing iron filings linked together to form such 

lines of magnetism.  In fact, there are actually no such lines 'painted onto space' 

in the region surrounding a magnet. At each point in space, a magnetized object 

will act like a compass needle with one end becoming a North and one a South 

pole. A close-by object will also orient itself that way, so that if these objects were 

individual iron needles they would appear to form a line in space.  In places 

where the field is strongest, these magnetized objects will be crowded together 

giving the appearance of lines crowded together. This is such a useful, and 

intuitive, way to model the intensity and orientation of the magnetic field in space 

that physicists use lines of force as a helpful way to mathematically describe 

magnetic fields.  It can, however, lead to a severe misconception if you do not 

remind yourself that the lines are not actually  real. 
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3.0    Magnetic fields in the Universe 
 For thousands of years, mariners have used the Earth's  magnetic field as 

a compass to find their way to safe harbor. The Earth's field looks very much like 

the magnetic field of a common bar magnet. The axis of the field is tilted by about 

11.5 degrees to the axis of rotation of Earth. It is a mystery why this is so.   

 No one knows why, but these kinds of offsets between magnetic and 

rotational axis are found among the magnetic fields of some of the other planets 

shown in the table on the next page. 

 

 

 

 

 

 

 

 

  

Planet Tilt 
(degrees) 

Dipole 
Moment 

Fluid 

Mercury ~14 6 x 1012 Fe-Ni 
Earth 11.5 8 x 1015 Fe-Ni 

Jupiter 10 1.66 x 1020 Metallic H 
Saturn Co-axial 4.6 x 1018 Metallic H 
Uranus 59 3.9x1017 Unknown 

Neptune 47 2.16 x 1017 Unknown 
Note: The Dipole Moment is in units of Tesla meter3 

 

 The sun and planets in our solar system are not the only bodies known to 

have magnetic fields. Astronomers have been able to determine that some dark, 

interstellar clouds several light years across may be partially supported against 

gravitational collapse by internal magnetic fields. These fields are a thousand 

times weaker than Earth’s magnetic field, but fill up a volume of space many 

cubic light years in size. 

 Astronomers have also detected magnetic fields within clouds of plasma 

ejected by massive black holes in the cores of some galaxies. The image below 

of the giant radio galaxy Cygnus A spans 1 million light years from edge-to-edge 

and shows a pair of gas clouds supplied by magnetically-focused beams from the 

core of the galaxy, seen only as a spot of light at the center of the image. 
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Image of the radio galaxy Cygnus A revealing magnetized plasma 

 

 

 

 

 

 

 

 

 

 
 
4.0   Magnetic Storms and  Auroral Activity 
 Near the poles of Earth, observers have often seen glowing clouds 

shaped like curtains, tapestries, snakes, or even spectacular radiating beams. 

Northern Hemisphere observers call them the Northern Lights or the Aurora 

Borealis. Southern Hemisphere observers call them the Southern Lights or 

Aurora Australis. Because most people, and land masses, are found north of the 

equator, we have a longer record of observing them in northern regions such as 

Alaska ,Canada, Scandinavia, but sometimes as far south as the Mediterranean 

Sea or Mexico! 

 In the 1740's, George Graham (1674-1751) in London, and Anders 

Celsius (1701-1744) in Uppsala, Sweden began taking detailed hourly 

measurements of changes in the Earth's magnetic declination. The fact that this 

quantity varied at all was known as early as 1634 by Gellibrand's observation of 

the 'variation of the (magnetic) variation' (Fleming, 1939). It didn't take very long 

before Celsius and his assistant Olof Hiorter uncovered in the 6638 hourly 

readings, a correlation between these disturbances and local auroral activity. 

Moreover, comparing the records between Uppsala and London, it became quite 

apparent that the magnetic disturbances occurred at the same times at both 
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locations. By 1805, the independently wealthy, scientific traveler, Baron von 

Humbolt (1769-1859) had also noted these magnetic disturbances and called 

them magnetic storms' since they caused the same gyrations of his compass 

needles as local lightning storms would do. During a 13 month period, Humbolt 

and his assistant also made thousands of half-hourly readings of a compass 

needle just as Celsius and Hiorter nearly 100 years earlier. They would peer into 

a microscope at a needle on a graduated scale, little more than an ordinary 

compass. At half-hourly intervals, day and night, the position of the needle would 

be noted. By the 1850's networks of observatories amassed millions of these 

observations. 

 These 'magnetic storms' are spawned by major Coronal Mass Ejections 

(CMEs) from the sun. If  Earth has the misfortune of being in the 'right'  place in 

its orbit, within a few days, these million kilometer/hour plasma clouds reach the 

Earth and impact its magnetic field. The momentary compression of the field 

caused an increase in the field strength at the Earth's surface. Many physical 

processes are then precipitated as the CME particles and magnetic fields invade 

geospace causing minute-to-minute changes in the geomagnetic field near 

ground level. Magnetometers then notice complex field changes which last until 

the CME plasma passes the Earth and geospace conditions return to normal. 

Major magnetic storm events also lead to spectacular auroral displays even at 

low geographic latitudes.  
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1What is Magnetism? 

 We have all had the experience of using simple magnets to hold notes on 
surfaces such as refrigerator doors. Magnetism is the force produced by magnets which 
does all of the "holding". Magnetism is also a very important force in nature which can 
move hot gases in stars, and in the space around the earth.  In this laboratory activity, 
students will investigate magnetism and magnetic forces. The students will explore the 
attracting and repelling properties of magnets through hands on experiences.  
 
Materials: 
 Magnets (enough for class);   Paper clips;   String;    Books;     Ruler;    Learning Log 
 
Objectives:  

• The students will investigate that magnets are attracted to items that contain metals such 
as iron.  

• The students will experience that a magnetic force is an invisible force.  

• The students will explore magnets attracting and repelling properties. 
 
Procedure: 

• Give each student a magnet. Have the students explore the objects that the magnet 
would be attracted to. The students should look at the objects and find common 
characteristics. The students should record their findings in a Learning Log.  

• Tape one end of a piece of string to a desk; tie the other end onto a paper clip. Take a 
second piece of string and suspend the magnet from a ruler anchored with books. Adjust 
the level of books so that the distance between the magnet and the paper clip allows the 
clip to stand up without touching the magnet. The students should see that a magnetic 
force could be invisible. You can place pieces of paper or cloth between the clip and the 
magnet to show the strength of the magnetic force.   Can the students find materials that 
block magnetic forces? 

• With the string still attached, have the students try to raise the paper clip from the desk 
with a magnet. They should try to accomplish this without letting the magnet and paper 
clip touch. The students should keep a log of how they were able to accomplish this; what 
methods and strategies were used.  

• Allow the students time to explore the attracting and repelling properties of magnets. They 
should be able to demonstrate that a magnet has two ends or poles that will attract or 
repel from other poles. Have the students observe what happens when two magnets are 
repelling from each other. The students should find a partner and discuss what they have 
seen and whether their classmate was able to discover the same properties. 

• Have students complete the form on the reverse to test their understanding of how 
common magnets and magnetism are at home and elsewhere. 

Conclusions: 
 1) The students will learn the elementary characteristics of magnetism. 2) The students 
will demonstrate the attracting and repelling properties of magnets.  
 
Key Terms: 
 Magnet - a metal that can attract certain other metals. 
 Magnetic Properties - refers to an item that can attract or repel items like a magnet. 
 Poles - refers to the two areas of a magnet where the magnetic effects are the strongest.  Polarity - 
The poles are generally termed the north and south poles. Poles that are alike (both north or both south) will 
repel each other, while poles that are different (one north, one south) will attract  each other. 
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A Magnetic Treasure Hunt! 1 
  Magnets and magnetic forces are very common, though sometimes not very 

obvious, in the world around you. How many different kinds of magnetic devices, or 
phenomena can you identify in your home, school, city, country and in nature? Create 
a list, and compare it with your classmates! 
 
 
1.----------------------------------------------------------- 
 
2.----------------------------------------------------------- 
 
3.----------------------------------------------------------- 
 
4.----------------------------------------------------------- 
 
5.----------------------------------------------------------- 
 
6.----------------------------------------------------------- 
 
7.----------------------------------------------------------- 
 
8.----------------------------------------------------------- 
 
9.----------------------------------------------------------- 
 
10.---------------------------------------------------------- 
 
11.---------------------------------------------------------- 
 
12.---------------------------------------------------------- 
 
13.---------------------------------------------------------- 
 
14.---------------------------------------------------------- 
 
15.---------------------------------------------------------- 
 
16.---------------------------------------------------------- 
 
17.---------------------------------------------------------- 
 
18.---------------------------------------------------------- 
 
19.---------------------------------------------------------- 
 
20.---------------------------------------------------------- 
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2 What are Magnetic Fields? 

 In physical science, a "field of force"  is a region or space in which an object can cause 
a push or pull. Magnetic forces are felt around the entire magnet.  The region in which the 
magnetic forces can act is called the magnetic field. Magnetic lines of force define the 
magnetic field. The students will explore the lines of force of magnets and compare it to the 
lines of force on the sun and the earth.  
 
Materials: 
 Strong Magnets (enough for class or small groups);  Plastic wrap;  Iron filings;    Paper (white);  Plastic 
 teaspoon;   Plastic tray;  Compass;   Photograph of sunspot magnetic loops; Learning Log. 
 
Objectives:  

• The students will explore the magnetic field lines of a magnet.  

• The students will investigate the magnetic field lines between two attracting and two repelling magnetic 
poles.  

• The students will learn that the earth and the sun have magnetic properties. 

 
Procedures: 
 **Caution the students that the iron filings should not be eaten or blown into eyes. ** 

• Cover the magnets with plastic wrap to keep the iron filings off them. Place the covered magnet in the 
plastic tray and place the paper on top. The students should carefully use the spoon to sprinkle a small 
amount of the iron filings on the paper. The iron filings will stay in a pattern that indicates the lines of force 
of that magnet. The students should draw their observations in their learning logs. After the students have 
completed their observations, the iron filings can be poured off the paper and the tray back into the 
container.  

• Give each group of students a pair of covered magnets. Place the covered magnets about 3 cm apart in 
the plastic tray and place the paper on top. The students should carefully sprinkle a small amount of the 
iron filings on the paper. The iron filings will stay in a pattern that indicates the lines of force between the 
magnets. The students should look at the lines of force and determine whether the magnetic poles are 
alike or different. Have the students record their observations in their Learning Logs.  

• Have the students repeat the activity of finding lines of force, but this time one of the magnets must be 
reversed so that its opposite pole is about 3 cm away from the other magnet. The students should look at 
the lines of force and determine whether the magnetic poles are alike or different. The students should 
record their observations in their learning logs.  

• Display the photograph of magnetic loops on the Sun’s surface without informing the students of the 
source. Question the students about what they observe in the photograph. The image should resemble the 
magnetic lines of force the students saw in the previous activity. The students, as scientists, should 
understand that they are seeing magnetic properties on the Sun.  Discuss with the students what other 
property the shapes on the Sun need to share with a magnetic field if they are in fact, magnetic.   Answer - 
They should display a definite North and South polarity as well as loops.  Scientists have in fact confirmed 
this using other observations.   

• Discuss the student’s observations and update the K-W-L chart with new questions and information.  

• Display a compass to the students. Explain that in the Northern Hemisphere the needle of the compass will 
point to the magnetic north because it is magnetized. When a compass is held on Earth, the Earth’s 
magnetic field exerts a force on the needle. This should help the students understand that Earth also has 
magnetic properties.  If the "north" part of a compass is attracted to the magnetic north pole of the Earth, 
what is the polarity of the Earth's north magnetic pole?  Answer - South, because only magnetic opposites 
attract one another! 

 
Conclusions: 
 1) The students will gain an understanding of the presence of magnetic fields around magnets, the Sun 
and Earth. 2) The students will learn that the magnetic poles attract when they are different and repel when they are 
the same.  
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3 How to Draw Magnetic Fields - I 

Before students can take the next 
steps in understanding magnetism, they 
need to master the 'artistic' technique of 
rendering magnetic field lines with 
reasonable accuracy. The upper 
photograph shows the magnetic field lines 
rendered using iron filings for an ordinary 
bar magnet with the South (S) and North 
(N) polarities indicated. The lower 
photograph shows the magnetic filings 
near two magnetic poles that are (top) 
opposite polarity (N and S) and (bottom) 
like polarity (S and S).  
 
Materials: 
 A copy of the photographs to the left;  
Pencil; Learning Log 
 
Objectives:  

• The students will learn how to draw 
accurate magnetic field line patterns 
for bar magnets in simple orientations. 

Procedure: 
• Provide each student with their own 

copy of the photographs to use as a 
guide. 

• Draw two circles about 1 cm diameter 
and labeled 'N' and 'S' separated by 5 
cm. 

• Connect the circles with realistic field 
lines. 

• Draw other pairs of circles with like-
polarities and draw the accompanying 
field lines. 

• Challenge: Place 6 circles with 3 'N' 
and 3 'S' labels in random locations 
and have students predict what the 
iron filing picture field will look like. 

Conclusions: 
 The students will learn that fields line 
drawings can help predict what magnetic fields 
look like when rendered accurately. 
 
 
Key Terms: 
 Magnet Field Line - an imaginary line that 
describes the shape of the magnetic field. 
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A Few Notes to the Teacher! 3 
 1 - Students should be reminded that the first step to understanding Nature is to make 

sure you have carefully observed it! A sloppy drawing that is not faithful to what Nature 
is presenting to your senses only leads to a poor starting point for creating an accurate 
interpretation. This can cause you to waste a LOT of time. 

2 - Magnetic field shapes, revealed by iron filings, are not jagged lines, but smooth, 
flowing arcs that even the course jagged iron filings cannot do justice.  

3 - Students should be encouraged to look at the photographs VERY CAREFULLY 
and not assume that they 'got the idea' of what the patterns of lines look like just by a 
quick glance at the photos. 

4 - Student sketches should show individual lines as smooth, nearly circular, arcs that 
leave one point on a bar magnet, and symmetrically connect with a mirror point on the 
opposite end of the bar magnet. All of the lines must begin and end only on the pole of 
a magnet, but not the same pole. 

5 - Students should notice that field lines do not cross each other or form kinks. 

6 - Students studying the bar magnet should notice that if they placed a mirror exactly 
perpendicular to the mid-point on the bar magnet, that the field lines will look 
symmetric about this 'mid plane'. 

7 - For opposite poles face each other, a field line on one pole will connect with a 
matching point on the other magnet pole.  

8 - When like poles face each other, a line forms mid-way between the two poles 
where the field lines do NOT cross to the other magnet pole. Instead, the lines bunch 
up (but do not cross) each other. The lines leave this region by bending back, 
gracefully, to the opposite pole of the same magnet. 

 

 

 

Note also that the photograph of the bar magnet iron filings was from the book 'Practical 
Physics' published in 1914 by Macmillan and Company. The photograph of the like and 
opposing poles was from 'A textbook of Physics' by Alexander Duff, published in 1916 by 
Blakiston's Son and Company, Philadelphia.  Since the publication dates are prior to 1928, 
they are copyright-free and may be reproduced as needed, especially for educational 
purposes! 
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4 How to Draw Magnetic Fields - II 

  
 The next step in rendering an 
accurate model of a magnetic field is to 
represent the polarity of the field. Every 
magnetic field line has one end that is the 
South Polarity and one end that is the 
North Polarity. No field lines have the 
same polarity at both ends. By convention, 
physicists represent magnetic polarity by 
using arrows that point along the field line 
in the direction of the South Polarity. The 
figure to the left shows some common 
polarity situations. 
 
Materials: 
 Pencil; Learning Log 
 
Objectives:  

• The students will learn how to draw 
accurate magnetic field line patterns, 
including polarity, for bar magnets in 
simple orientations. 

Procedure: 
• Provide each student with their own copy 

of the diagram on the left to use as a 
guide. 

• Draw two circles about 1 cm diameter and 
labeled 'N' and 'S' separated by 5 cm. 

• Connect the circles with realistic field lines 
that have arrows pointed in the correct 
direction. 

• Draw other pairs of circles with like-
polarities and draw the accompanying field 
lines. 

• Challenge: Place 6 circles with 3 'N' and 3 
'S' labels in random locations and have 
students predict what polarities are present 
in different region of the map. 

Conclusions: 
 The students will learn that fields line 
drawings can help predict what magnetic fields  
and their polarities, look like when rendered 
accurately. 
 
Key Terms: 
 Magnetic Polarity - One of two possible 
conditions for a region of magnetic field that, by 
convention, are called North and South. 
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4 Notes to Teacher 

 1 - Because this is a follow-up to Lab Activity 3, students should be able to render a 
reasonably convincing field line model that represents a hypothetical 'iron filing' picture.  
 
2 - Students should first draw the field lines, then add the arrows in the correct directions 
afterwards. Students should pick one field line from a magnetic pole, and follow it to its South 
Pole with the arrow consistently pointing 'South' along the field line. 
 
3 - The figure below shows one such hypothetical field line and polarity diagram based on 6 
magnetic poles in the diagram.  
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5 Magnetic Forces and Field Line Density 

 A magnetic field diagram (Lab 1-4) can be used to estimate the actual 
strength and direction of the over-all magnetic field of a system. The strength of 
the magnetic force is proportional to the density of the magnetic field lines in 3-
dimensions. The more magnetic field lines that are present in a given volume 
(area) of space, the more intense will be the expected magnetic forces. In this 
activity, students will estimate on a 2-dimensional plane, whether they would 
predict strong, medium or weak magnetic forces at various points in their 
diagram.  
 As an option, students may also use crayons with three different colors to 
fill-in the space in their diagram to represent the three magnetic force intensities. 
 
Materials: 
 Pencil; Optional crayons or colored pencils; Learning Log 
 
Objectives:  

• The students will learn how to translate simple field line patterns into a qualitative 
measure of magnetic force strength. 

Procedure: 
• Have each student construct a simple field line drawing based on four poles. 

• Students will identify all of the regions with a high density of lines and marks 
these as 'Strong' regions.  

• Students will then identify all of the 'Weak' areas with few magnetic field lines. 

• Students will then decide at what level their field line patterns represent 'Medium 
Strength' forces. 

 
Conclusions: 
 The students will learn that fields line drawings can help predict what intensity of 
magnetic forces will be experienced in different regions of space. 
 
Key Terms: 
 Magnetic Field Line - An imaginary mathematical line that indicates the direction 
and polarity of a portion of a magnetic field. 
 Magnetic Field Strength - The number of field lines that pass across a given 
surface area. 
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Example of a Magnetic Field Strength Map 5 
 The figure below is an example of a magnetic field strength (magnetic force) map rendered as directed.  
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6 What is the Magnetosphere? 

 Scientists call the region surrounding the Earth where its magnetic field is located, 
the magnetosphere. When the solar wind sends it streams of hot gases (plasma) 
towards Earth, the magnetosphere deflects most of this gas. Students will use hands-on 
experiences to learn about the magnetosphere (the magnetic field surrounding Earth). 
They will learn how the solar wind (the stream of electrically conducting plasma emitted 
by the sun) interacts with the magnetosphere.  
 
Materials: 
 Magnets– strong polarity bar magnet (enough for groups if possible);  Plastic 
 wrap;  Iron filings;  Plastic salad tray or aluminum tray;  Straws 
 
Objectives:  

• The students will use models to learn about Earth’s magnetosphere.  

• The students will use models to learn how the solar wind interacts with the 
magnetosphere. 

Procedure: 
What protects the Earth? 

• The Earth has a protective cover called the magnetosphere. It works as skin does 
on your body to keep out harmful things. Students can observe a model of the 
magnetosphere using magnets and iron filings. To keep your bar magnet clean, 
wrap it in plastic wrap with tape around it, or put contact paper around it. Place a 
bar magnet under a plastic salad tray or aluminum tray. Sprinkle some iron filings 
onto the tray from a distance of about 10 inches. Observe the pattern made by 
the iron filings held in place by the forces between the opposite poles of the 
magnets. Earth’s magnetosphere can be modeled by blowing softly through a 
straw towards the magnetic field lines. A squishing of the field lines on one side of 
the model shows how Earth’s magnetosphere looks. Have the students draw the 
model of Earth’s magnetosphere in their learning logs. 

What happens when the solar wind approaches Earth’s magnetosphere? 

• Students can observe the way water flows around a stone as a pattern of the 
solar wind as it flows around the earth.  

• Place the bar magnet under a plastic tray or aluminum tray. Place a small button 
directly above the center of the magnet to model the earth. Sprinkle the iron filings 
along the edge of one side of the tray covering the magnet. Softly blow the filings 
toward the button through a straw. Caution the students to blow carefully so that 
no iron filings get into eyes or mouth! Depending on the force used in blowing, the 
filings will be trapped in the magnetic lines of force. Compare this to the trapping 
of the solar particles by the Earth’s magnetosphere. Have the students draw the 
model of the effects of the solar wind on the earth’s magnetosphere. 

Conclusions: 
 The students will gain an understanding of Earth’s protective magnetic field, 
called the magnetosphere. The students will gain an understanding of how Earth’s 
magnetosphere interacts with the charged plasma sent from the sun in solar wind and 
CMEs. 
Key Terms:  
 Magnetosphere – magnetic cavity carved out by the solar wind by virtue of the 
magnetic field surrounding Earth.  
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A Reference Figure Showing the Magnetosphere 6 
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1 Magnetic Units of Measure 

 Magnetic fields can be measured 
just like other physical quantities such as 
mass (grams, kilograms), length 
(centimeters, meters), force (dynes, 
Newtons) and energy (ergs, joules).  
Magnetic field strengths are measured in 
units called Gauss or Teslas, but the 
choice of which units to use depends on 
the scientific discipline, so scientists are 
facile in converting from one unit to the 
other.  
 A magnetic field with a strength of 
10,000 Gauss also has a strength of 1 
Tesla. We can also convert into decade 
units. For example, 100 kiloGauss equals 
10 Tesla, and 1 microTesla equals 10 
milliGauss. It is also much easier to 
remember that Earth's magnetic field has 
a strength of 0.5 Gauss than 0.00005 
Teslas. 
 The table to the left shows a variety 
of different objects along with their 
magnetic field strengths, but not ordered 
according to either increasing or 
decreasing field strength. The strength is 
provided either as Gauss (G) or Teslas 
(T). Typically, each area of physics or 
engineering adopts the unit of magnetism 
most convenient to the objects being 
studied.  
 
Problem 1 - Choose either the Tesla or the 
Gauss scale, and convert all of the numbers 
into the correct decimal value. 
 
Problem 2 - Order the objects from strongest 
to weakest magnetic field strength. 
 
Problem 3 - What is the ratio of the most 
intense to the weakest magnetic field in the 
list; A) written as a decimal? B) Written in 
scientific notation? 
 
Problem 4 - What is the range of natural 
magnetic fields compared to human-created 
magnetic fields? 
 

Object Strength 
Electron Microscope 10,000 G 

Cosmic Field 1 picoG 
Sunspot 5 kiloG 

Fluorescent Lamp 0.1 G 
NHMFL magnet 45 T 

Earth 700 milliG 
Computer Monitor 0.25 mG 
LHC accelerator 65,000 G 

Toy Magnet 0.3 milliT 
Hair Dryer 400 mG 

Medical MRI  3 T 
Sunlight 3 microT 

Magnetar 1,000 terraG 
Interstellar Cloud 10 milliG 

Solar Surface 5 G 
Milky Way 0.000005 G 

Neodymium Magnet 12 kiloG 
Lodestone 0.001T 

Jupiter 0.1 T 
Tokamak Reactor 25 G 

Pulsar 1 gigaG 
White Dwarf 300 T 
Super Nova 100 G 

Research magnets 40 T 
Research magnets 850 T 

Solar Wind 20 nanoT 
Brain Neuron .05 picoT 

 
 
 
Helpful prefixes: 
 

    Terra  
     Giga  
    Mega  

       Kilo  
       Milli  

    
     

      

10+12

10+9

10+6

10+3

10-3

      1,000,000,000,000   
       1,000,000,000          
       1,000,000                  
       1,000                        
        0.001                       

Micro  10-6        0.000001 
Nano  10-9       0.000000001 
Pico  10-12      0.000000000001 
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Object Strength Gauss units Tesla units Rank 

Electron 
Microscope 

10,000 G 10,000 1 10 

Cosmic Field 1 picoG 0.000000000001 0.0000000000000001 25 
Sunspot 5 kiloG 5,000 0.5 11 

Fluorescent Lamp 0.1 G 0.1 0.00001 20 
NHMFL magnet 45 T 450,000 45 5 

Earth 700 milliG 0.7 0.00007 18 
Computer Monitor 0.25 mG 0.00025 0.000000025 23 
LHC accelerator 65,000 G 65,000 6.5 7 

Toy Magnet 0.3 milliT 3 0.0003 17 
Hair Dryer 400 mG 0.4 0.00004 19 

Medical MRI  3 T 30,000 3 8 
Sunlight 3 microT 0.03 0.000003 21 

Magnetar 1,000 terraG 1,000,000,000,000,000 100,000,000,000 1 
Interstellar Cloud 10 milliG 0.01 0.000001 22 

Solar Surface 5 G 5 0.0005 16 
Milky Way 0.000005 G 0.000005 0.0000000005 24 

Neodymium 
Magnet 

12 kiloG 12,000 1.2 9 

Lodestone 0.001T 10 0.001 15 
Jupiter 0.1 T 1,000 0.1 12 

Tokamak Reactor 25 G 25 0.0025 14 
Pulsar 1 gigaG 1,000,000,000 100,000 2 

White Dwarf 300 T 3,000,000 300 4 
Super Nova 100 G 100 0.01 13 
Research 
magnets 

40 T 400,000 40 6 

Research 
magnets 

850 T 8,500,000 850 3 

Solar Wind 20 nanoT 0.0002 0.00000002 24 
Brain Neuron .05 picoT 0.0000000005 0.00000000000005 26 

1 Answer Key 

Problem 1 - Answer: See above table column 3 in Gauss units or column 4 in Teslas. 
Example: 0.05 picoTeslas = 0.05 x 10-12 Teslas x (10,000 Gauss/1 Tesla) = 5 x 10-10 G 
 
Problem 2 - Answer: See table, column 5. 
 
Problem 3 - Answer: A) Magnetar compared to Cosmic magnetic fields: 
1,000,000,000,000,000 Gauss / 0.000000000001 Gauss =  
1,000,000,000,000,000,000,000,000,000 times  
B)  10+15 G / 1x10-12 G = 1 x 1027 times.   
 
Problem 4 - What is the range of natural magnetic fields compared to human-created 
magnetic fields? Answer; Natural range = Magnetar to Cosmic = 1 x 1027 times. Human 
Technology: Pulse Magnets compared to Computer Monitor or 8,500,000/0.00025 =  3.4 
x 109 = 34 billion times 
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2 Magnetic Field in a Wire Carrying a Current 

If you connect a battery to a wire, the 
current flowing through the wire will create a 
magnetic field around the wire that looks like 
the figure to the left. If you take your right 
hand, palm up, with your thumb pointed in the 
direction of the current, your fingers will curl in 
the direction of the magnetic field arrows. This 
is called the Right-Hand Rule. 
 Notice that the magnetic field looks 
different depending on how you draw it in 2-
dimensions. If you place the wire 
perpendicular to the paper with the current 
flowing into the paper, the magnetic field looks 
like the middle sketch. If you place the wire 
along the length of the paper with the current 
flowing from bottom to top, it would look like 
the bottom sketch, where the arrows on the 
left side (filled circles) are coming out of the 
page, and the arrows on the right side (open 
circles) are going into the page. In the 
lower figure, the size of the circle represents 
the strength of the field. In the upper figure, 
the number of circles in a given space 
(density) represents the strength. 
 The formula, below, gives the strength 
of the magnetic field from the wire, in Teslas 
units, as a function of distance, D, in meters 
from the wire, and the current, I, flowing in the 
wire, in amperes. Note that a current of +10 
Amperes is flowing in the opposite direction 
than a current of -10 amperes. 
 
Problem 1 - If the current increases by a factor 
of 4, and the distance increases by a factor of 2, 
by what factor does B change? 
 
Problem 2 - For a +10 Ampere current, what is 
the value for B at a distance of 0.5 meters: A) In 
Teslas? B) In Gauss? 
 
Problem 3 - Suppose you had two parallel 
wires. In Wire-A the current was +10 Amperes, 
and in Wire-B the current was -10 Amperes. 
What would be the value for B in Teslas, at a 
distance of 0.5 meters? 
 
Problem 4 - Sketch the magnetic field pattern if 
the wire were bent around into a perfect circle. 
Where would the magnetic field be the most 
intense, and what B would result if I = +10 
amperes and the circle had a radius of 0.5 
meters? 

 

4 (π 1.0x10−7)B = 2πD  

I
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Answer Key 2 
  

Problem 1 - If the current increases by a factor of 4, and the distance increases by a factor of 2, by 
what factor does B change? Answer: From the formula, if I and D are the initial values for B-initial, 
and 4I and 2D are the final values, then B-final =  4 π (1.0 x 10-7) 4I/(2 π 2D) = B-initial x 4/2 = 2 x 
B-initial. So, B-final = 2 x B-initial. 
 
 
Problem 2 - For a +10 Ampere current, what is the value for B at a distance of 0.5 meters: A) In 
Teslas? B) In Gauss? Answer: A)  4 π (1.0 x 10-7) (+10)/(2 π x 0.5) = +0.000004 Teslas. B) Since 1 
tesla = 10,000 Gauss, we have 0.000004 Teslas x (10,000 Gauss/1Tesla) = +0.04 Gauss. 
 
 
Problem 3 - Suppose you had two parallel wires. In Wire-A the current was +10 Amperes, and in 
Wire-B the current was -10 Amperes. What would be the value for B, in Teslas, at a distance of 0.5 
meters? 
Answer: From  the answer to Problem 2, for I = +10 Amperes, B = +0.000004 Teslas, and for I = -
10 Amperes, B = -0.000004 Teslas, so the combined magnetic field would be B = +0.000004 - 
0.000004 = 0 Teslas 
 
 
Problem 4 - Sketch the magnetic field pattern if the wire were bent around into a perfect circle. 
Where would the magnetic field be the most intense, and what B would result if I = +10 amperes 
and the circle had a radius of 0.5 meters? 
Answer: Students should be able to draw a diagram resembling the one below. The most intense 
field will be at the geometric center of the loop. Calculating the actual intensity is a bit tricky. At the 
geometric center, half of the field comes from each side of the loop. From  the wire on one side of 
the loop, B = +0.000004 Teslas at the center where D = 0.5 meters. From the wire on the other 
side of the loop, B = + 0.000004 Teslas at the center where D = 0.5 meters, so the combined 
magnetic strength is the sum of these, or +0.000008 Teslas. 
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3 The Magnetic Field of a Solenoid 

 

 Imagine a hollow tube with a length of 
insulated wire smoothly wrapped in one layer around 
its circumference so that each turn is adjacent to the 
next one with no gaps. This is a basic electrical coil 
that can be used in many ways. For example, if you 
pass a current through the coil, an electromagnet 
can be created.  
 
 Often times, the wires is wrapped around a 
nail or a pencil, and it can be used to pick up 
paperclips or tacks. In this set of problems, we are 
going to investigate what the magnetic field looks 
like, and use a formula to determine the strength of 
the field. 
 74 (1.0 10 )

2
x IB D

π
π

−
=

Problem 1 - The formula above gives the strength, B, in Teslas, of a magnetic field from a 
wire carrying a current of I amperes at a distance of D meters. Suppose a +1 Ampere 
current flows through a wire. What is the value for B at a distance of 0.5 centimeters? 
 
Problem 2 - Draw two loops of wire with the current circulating in the same direction, and 
separated by 1/2 their diameter. To make the field line diagram simple to interpret, show 
the loops of wire as though viewed edge-on. Draw four magnetic field lines of the first loop. 
Draw four magnetic field lines produced by the second loop. Allow the second set of 
magnetic field lines to be drawn on top of the field lines of the first loop. Include the correct 
arrows giving the polarity of the magnetic field line.  
 
Problem 3 - Simplify the field line sketch by starting with the first overlapping pair of 
corresponding field line circles. Replace the pair with a new field line that combines the 
two, then erase the original lines. Continue until all 16 of the original field lines have been 
replaced by four new, smoothed, field lines. Note: the final field lines must not cross each 
other or have kinks. Based on the pattern for two loops, what do you think the field will look 
like for a long string of loops placed side-by-side and spaced close together? 
 
Problem 4 -  The intensity of the magnetic field, B in Teslas,  inside  a solenoidal coil is 
given by the formula B = cN I / L  where c = 4 π x 10-7, N is the number of turns, L is the 
length in meters and I is the current in amperes. A student makes an electromagnet by 
wrapping 100 turns of copper wire on a nail with a length of 3 centimeters. If a current of 
1.5 amperes is applied to the coil. If 10,000 Gauss equals 1 Tesla, what is the strength of 
the electromagnet in A) Teslas? B) Gauss?  C) How does the strength of this 
electromagnet compare to Earth's magnetic field at the ground (0.7 Gauss) and the 
strength of a refrigerator magnet (100 Gauss)? 
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3 Answer Key 

 Problem 1 - Answer:  4 (3.14)(1.0 x 10-7) (+1.0)/(2 x 3.14 x 0.005) = 0.00004 Teslas. 
 
 
Problem 2 - Answer; See sketch below (left). 
 
 
Problem 3 -  Answer: See sketch below (right). By deduction, students should be able to 
sketch a hypothetical field similar to the bottom figure. (Courtesy NDT Education Resource 
Center, University of Iowa) 
 
Problem 4 -  Answer:  First we have to convert all length units to meters so L = 3 cm  
becomes 0.03 meters.  
A) From the formula, B = 4 π x 10-7 (100 turns) x (1.5 Amps)/0.03 meters =  0.0063 Teslas. 
B)  0.0063 Teslas x (10,000 Gauss/1 Tesla) = 63 Gauss.  
C) Compared to Earth's ground-level field, this is 63 Gauss/0.7 Gauss = 90 times stronger, and 
compared to the refrigerator magnet it is  63 Gauss/100 Gauss = 0.63 as strong. 
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4 Magnetic Forces and Gravity 

 A student wants to make an 
electromagnet that will lift 0.5 kilograms of iron 
nails. He knows that the gravitational force 
acting on the steel is F = mg, which is just F = 
0.5 kg x 9.8 m/sec2 =  4.9 Newtons. He also 
knows that the formula for the force F in 
Newtons produced by an electromagnet is the 
one shown below, where L is the length of the 
coil in meters, N is the number of turns of wire 
wrapped around a steal core, I is the current in 
amperes through the wire, and A is the surface 
area in square-meters of the lifting face of the 
magnet. The quantity μ = 4 π (1x10-7) 
Newton/Ampere2 is called the permeability of 
free space, and the magnetic permeability for 
steel is given by the constant C = 700. 
 

 

μC N2 2I 2AF =
2L2

Problem 1 - How many turns of wire, N, will be needed to create an 
electromagnet capable of lifting 0.5 kilograms of iron nails if I = 0.5 Amps, A = 
0.0016 m2,  L = 0.1 meters?   
 
 
 
Problem 2 - An industrial 'junk yard' electromagnet lifts cars weighing up to 
1,500 kilograms. The diameter of the lifting plate is 1 meter, and the thickness 
of the coil is  0.4 meters. If the coil consists of 10 windings of heavy-gauge 
wire, how many amperes must be used to create the required lift? 
 
 
 
Problem 3 - A student wants to increase the quantities N, I, A and L by a 
factor of 2 to make a larger electromagnet. By what factor will the lifting mass 
increase? 
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Answer Key 4 
  Electromagnets have been used in junk yards to lift scrap metal for over 100 years. The 

photograph is from the 1914 book 'Elementary Magnetism and Electricity' by C. Jansky published by 
McGraw-Hill.  
 
 
Problem 1 - How many turns of wire, N, will be needed to create an electromagnet 
capable of lifting the 0.5 kilograms of iron nails if I = 0.5, A = 16 cm2,  Amperes, L = 10 
centimeters?  Answer; For F = 4.9 Newtons solve for N2 to get    
N2 = (4.9)(2) (0.1)2/(4 x 3.14 x 10-7)(700)2 (0.5)2 (0.0016) =  398 so that after taking 
the square-root of both sides we get N=19.95 which rounds to 20 turns of wire. 
 
 
Problem 2 - An industrial 'junk yard' electromagnet lifts cars weighing up to 1,500 
kilograms. The diameter of the lifting plate is 1 meter, and the thickness of the coil is  
0.4 meters. If the coil consists of 10 windings of heavy-gauge wire, how many amperes 
must be used to create the required lift? 
Answer: First you have to calculate how many Newtons of force ,F, are required. For F 
= m g this is just F = (1,500 kg) x (9.8 meters/sec2) = 14,700 Newtons of force.  
Next, you also need to convert the diameter of the plate to a surface area for the 
electromagnet of A = π(1 meter/2)2 = 0.78 meters2. 
 
You need to find out what current is needed so solve the equation for I  to get  
 
I = (2 F L2)/(μ C2N2A)1/2      
 
then substitute the stated values to get   
 
I = (   (2 (14,700) (0.4)2)  /  ((4 x 3.141 x 10-7) (700)2(10)2(0.78)) ) 1/2  
  =  (4.7/ 4.8) 1/2

=  10 Amperes. 
 
 

Problem 3 - A student wants to increase all of the quantities N, I, A and L by a factor 
of 2 to make a larger electromagnet. By what factor will the lifting mass increase? 
 
Answer:   N becomes 2N, I becomes 2I, A becomes 2A and L becomes 2L, so 
substituting into the formula F = μ C2N2A /  2 F L2 we get  F(new) = μ (2C)2(2N)2 2A /  
2  (2L)2  which simplifies to F(new) = μ (2C)2(2N)2 2A /  2  (2L)2    and so  
F(new) = 8xF(old). The new electromagnet with be 8 times stronger, and so since F = 
m g, and the acceleration of gravity,g is a constant, it will be able to lift 8 times more 
mass. 
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5 Magnetic Fields in Two Dimensions 

 The magnetic field from a bar 
magnet actually surrounds the 
complete magnet. When we sprinkle 
iron filings on a sheet of paper to 
reveal the magnetic lines of force, we 
are only seeing what the field looks 
like in two of the three dimensions to 
space.  For example, the top picture 
is a perspective model of Earth's 
magnetic field in 3-dimensions, while 
the lower picture is a 2-dimensional 
version of a similar magnetic field. 
 The strength of a magnetic 
field at a particular point in two-
dimensional space actually consists 
of two distinct numbers that define 
the strength of the magnetic field 
along the X and Y axis.   
 These two 'components' form 
the two sides of a right-triangle and 
we can define them as Bx along the 
X-axis and By along the Y-axis.  If we 
use the Pythagorean Theorem, the 
total strength of the magnetic field is 
just the length of the hypotenuse of 
this 'magnetic' triangle. The angle 
between the X-axis and the 
hypotenuse measures the direction 
angle of the magnetic field in space. 

Problem 1 - On a graph paper, and at a convenient scale of 1 Tesla per division, 
draw the triangles representing the following magnetic fields with the components 
given as the ordered pairs (Bx, By) and with the strength measured in Teslas: A) 
(3.0, 4.0);     B) (10.0, 10.0);   C)  (6.0, 8.0)    D)  (13.0, 10.0) 
 
 
Problem 2 - Using a protractor, measure the direction angles for the four 
magnetic fields drawn in Problem 1. 
 
 
Problem 3 - Using the Pythagorean Theorem, calculate the total strength in two-
dimensions of the magnetic fields in Problem 1 and 2. Give the answers in Teslas 
to one decimal place accuracy. 
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Answer Key 5 
 Problem 1 - On a graph paper, and at a convenient scale of 1 Tesla per division, draw 

the triangles representing the following magnetic fields with the components given as 
the ordered pairs (Bx, By) and with the strength measured in Teslas: A) (3.0, 4.0);     B) 
(10.0, 10.0);   C)  (6.0, 8.0)    D)  (13.0, 10.0)   Answer: See figure below. 
 
 
Problem 2 - Using a protractor, measure the direction angles for the four magnetic 
fields drawn in Problem 1. Answer:  Students may also verify their measurements by 
using the properties of 30:60:90,  45:45:90   triangles and simple trigonometry. A 60 
degrees, B) 45 degrees.  C)  53 degrees  (this angle is the arctangent of 8/6); D) 38 
degrees  (this angle is the arctangent of 10/13) 
 
 
Problem 3 - Using the Pythagorean Theorem, calculate the total strength in two-
dimensions of the magnetic fields in Problem 1 and 2. Give the answers in Teslas to 
one decimal place accuracy. 
Answer: A)  B = (32 + 42) 1/2 = 5.0 Teslas   B)  B = (102 + 102) 1/2 = 14.1 Teslas  C)  B 
= (62 + 82) 1/2 = 10.0  Teslas  D)   B = (132 + 102) 1/2 = 16.4 Teslas. 
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6 Plotting Magnetic Fields in Two Dimensions 

 Plotting a magnetic field on a regular 
Cartesian coordinate grid is actually more 
complicated than it may sound, because you 
are plotting both position in space and the 
intensity and direction of the field at that point. 
The example to the left shows the magnetic 
field at one point in space (X= 6.0, Y=8.0), 
with the direction of the magnetic field at that 
point given by an arrow inclined at a specific 
angle; in this case 60 degrees.  A compass 
placed at that location will point 'North' in the 
direction of the arrow. 

Problem 1 - Using a protractor, graph the magnetic field in the First and Fourth 
Quadrants defined by the following points where the units for X and Y are centimeters, 
and the direction is given in degrees. For convenience, use graph paper with 1-cm grids, 
and draw the arrows 1-cm long. 
 

Point X (cm) Y (cm) Angle 
A 1 1 45 
B 3 1 30 
C 1 4 60 
D 4 4 30 
E 4 7 45 
F 7 2 0 
G 9 5 0 
H 11 1 300 
I 13 4 330 
J 1 9 80 
K 8 9 30 
L 13 10 0 
M 15 0 270 
N 2 -2 135 
O 1 -4 120 
P 4 -4 150 
Q 8 -2 180 
R 11 -1 240 
S 13 -4 225 
T 9 -5 180 
U 4 -7 135 
V 1 -9 100 
W 8 -9 150 
X 13 -9 0 
Y 4 -2 150 

 
Problem 2 - Use reflection symmetry to draw the magnetic field in the other two 
quadrants. What kind of object has a similar type of magnetic field pattern?  
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 Problem 1 - Graph the magnetic field in the First and Fourth Quadrants defined by the 
following points where the units for X and Y are centimeters. Answer: See figure below. Note: 
As usual in geometry, angles are measured counterclockwise relative to the horizontal axis. 
 
Problem 2 - Use reflection symmetry to draw the magnetic field in the other two quadrants. 
What kind of object has this magnetic field pattern?  Answer: See figure below. The figure 
resembles a bar magnet with the North Pole at the top and the South Pole at the bottom, 
oriented vertically along the Y axis.  

Answer Key 6 
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7 Plotting Magnetic Fields in Two Dimensions 

 Plotting a magnetic field on a regular 
Cartesian coordinate grid is actually more 
complicated than it may sound. The example 
to the left shows the magnetic field (Bx=3.0 
Teslas, By=4.0 Teslas) at one point in space 
(X= 6.0, Y=8.0), with the length of the arrow 
representing the strength of the field pointed in 
the proper polarity direction. Here's how it was 
done. 
Step 1 - Plot the point (6.0, 8.0) on the 
Cartesian grid for its location in space. 
 
Step 2 - Determine the strength of the 
magnetic field at that point by using the 
Pythagorean Theorem B = (Bx2 + By2)1/2 to 
get B = (3.02 +4.02)1/2  =  5.0 Teslas. 
 
Step 3 - Determine the direction of B by 
finding the angle α = arccos (Bx/B)  so α = 
arccos(3.0/5.0)  and so α = 53 degrees. 
 
Step 4 - Starting at the point (6.0,8.0), draw an 
arrow that represents 5.0 Tesla in length that 
points at an angle of 53 degrees with the X-
axis. Use this same length to scale other 
magnetic field strengths in the rest of the map. 

Problem 1 - Graph the magnetic field in the First and Fourth Quadrants defined by the 
following points where the units for X and Y are in meters, and Bx and By are in Teslas. 
(Note: the values for Bx and By have been selected to make the plotting easier and do 
not accurately indicate how the intensity changes with distance in an actual magnet.) 
 

Point X 
(meters) 

Y 
(meters) 

Bx  
(Tesla) 

By  
(Tesla) 

A 1.0 1.0 40 40 
B 4.0 4.0 40 23 
C 9.0 5.0 20 0 
D 13.0 4.0 20 -12 
E 15.0 0 0 -10 
F 13.0 -4.0 -10 -10 
G 9.0 -5.0 -10 0 
H 4.0 -4.0 -12 20 
I 2.0 -2.0 -40 40 

 
Problem 2 - Use reflection symmetry to draw the magnetic field in the other two 
quadrants. What kind of object has this magnetic field pattern?  
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Answer Key 7 
 Problem 1 - Graph the magnetic field in the First and Fourth Quadrants defined by the 

following points where the units for X and Y are centimeters, and Bx and By are in Gauss. 
Answer: See figure below (with angles drawn approximately). Note: Positive angles are 
measured counterclockwise relative to the horizontal axis. Students need to be careful 
calculating the angle from the cosine so that the actual angle matches the correct quadrant 
determined by the signs (e.g. + and -) of Bx and By. 
Example: for Point-F, Bx is negative and By is negative so the angle is in the Third Quadrant, 
and Bx/B = -0.71 and cos(-0.71) = -135 which is the same as 360-135 = 225 in the standard 
angle naming convention. 
 

Point X 
(meter) 

Y  
(meter) 

Bx 
(Teslas) 

By 
(Teslas) 

B 
(Teslas) 

Bx/B Angle 

A 1.0 1.0 40 40 57 0.71 45 
B 4.0 4.0 40 23 46 0.87 30 
C 9.0 5.0 20 0 20 1.00 0 
D 13.0 4.0 20 -12 23 0.86 330 
E 15.0 0 0 -10 10 0.0 270 
F 13.0 -4.0 -10 -10 14 -0.71 225 
G 9.0 -5.0 -10 0 10 -1.00 180 
H 4.0 -4.0 -12 20 23 -0.50 120 
I 2.0 -2.0 -40 40 57 -0.71 135 

 
 
Problem 2 - Use reflection symmetry to draw the magnetic field in the other two quadrants. 
What kind of object has this magnetic field pattern?  Answer: See figure below. Although it may 
be a challenge to interpret the figure, which is only the data for one pair of magnetic field lines, 
the figure resembles a bar magnet with the North Pole at the top and the South Pole at the 
bottom, oriented vertically along the Y axis. 
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8 Magnetic Declination - Exploring Bx and By 

 Earth's magnetic field is a 3-dimensional 
object in space. At each point in space defined 
by the simple Cartesian coordinates (x,y,z) a 
magnetic field can have three 'components, 
each with differing intensity, which we define by 
the triplet of numbers (Bx, By, Bz). The 
combination of these three numbers using the 
Pythagorian Theorem gives the total intensity of 
the magnetic field at that point in space. 
 Imagine a sheet of paper exactly tangent 
to a specific geographic location (Latitude, 
Longitude). Draw a Cartesian grid on this paper 
so that X increases towards North, and the Y-
axis increases towards the East.  The Z-axis will 
be perpendicular to the sheet of paper, and 
increases towards the center of Earth. 
   When you use a magnetic compass, the 
needle points to Magnetic North. This is a 
slightly different direction than True Geographic 
North, which as you remember is along the X-
axis of our coordinate system.  The angle 
difference between True North and Magnetic 
North is called magnetic Declination. It is 
positive if the compass needle points to the east 
of True North, and negative if it points to the 
west of True North. This is a very important 
number to keep track of for navigation, and for 
hundreds of years, seafarers kept detailed logs 
of its value so that they could navigate the high 
seas accurately, and reach the intended harbor 
thousands of miles away. 

 Magnetic Declination is trigonometrically defined in terms of the values for Bx and By 
as  D = arctan (By/Bx). For example, at the location of the city of Chicago, Bx = 18,934 nT 
and By = -1120 nT, so By/Bx =  -0.0591  and  D = arctan(-0.0591), and so  D =  -3.38 
degrees.  This means that True North is 3.38 degrees to the east of the direction that your 
needle is pointing.  This can also be calculated by plotting Bx and By as the legs of a right-
triangle, and measuring the angle from the X-axis with a protractor. This is less accurate 
because the angles are usually small in most continental locations. 
 
Problem 1 - An explorer sets out from Anchorage, Alaska to travel to the North Pole. If Bx= 
+14,455 nT and By=  +5,061 nT, what is her Magnetic Declination: A) Determined by using a 
protractor; B) Determined by using arctangents?      
 
Problem 2 - The US Geological Survey provides websites where the magnetic Declination 
can be calculated for any geographic location: 
 http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp   or 
 http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp 
Where in the United States will your Declination be close to zero?  
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Answer Key 8 
 Problem 1 - An explorer sets out from Anchorage, Alaska to travel to the North Pole. If Bx= 

+14,455 nT and By=  +5,061 nT, what is her Magnetic Declination: A) Determined by using a 
protractor; B) Determined by using arctangents?      
 
Answer:  A) See scaled figure below, where each division represents 1,000 nT. A protractor 
yields an angle measure of about 19 degrees.  B)  D = Arctan (5061/14455) = +19.3 degrees,  
so Magnetic North is 19.3 degrees to the East of  True North,  
 
Note to Teacher: Because the magnetic declination of Anchorage is positive,  the needle is 
pointing to the east of True North, so the explorer needs to follow a path that is 19.3 degrees to 
the west of where her compass needle is pointing. 
 
Problem 2 - The US Geological Survey provides a website where the magnetic Declination 
can be calculated for any geographic location: 
 http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp or 
 http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp 
Where in the United States will your Declination be close to zero?  
Answer: Students should examine a string of US cities that span the continental US, then 
narrow their search until they find a declination approximately between -0.1 and +0.1 degrees. 
By trial-and-error, cities that are close to this range include, for example, New Orleans (-0.1 
degree); Saint Louis (-0.7 degrees). 
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9 Magnetic Inclination - Exploring Bx and Bz 

 The 3-dimensional properties of 
Earth's magnetic field lead to some 
interesting features when we explore it from 
various 2-dimensional perspectives. In the 
Bx-By plane, we examined the Magnetic 
declination angle, which is important to 
compass navigation. The Bz-Bx plane also 
provides an interesting new ingredient as 
shown in the top figure. 
 The magnetic Inclination angle, I, 
also called the Magnetic Dip angle, is a 
measure of how steeply a magnetic field line 
passes into the surface of Earth. If you were 
to hold a compass perfectly horizontal, it 
would 'point North' but its tip would also dip 
vertically to the ground. This feature was 
first discovered in 1581 by the English 
mariner and compass builder, Robert 
Norman. The lower figure shows an 
instrument used in 1808 to measure this 
angle. 
 

Problem 1 - The table below shows the magnetic field values (in units of 
nanoTeslas: nT) for several major cities. Calculate for each, using either 
trigonometry, or a scaled drawing and using a protractor, what the magnetic field 
inclination angle is in each instance. The data were obtained from the US 
Geological Survey, and are available at the website:     
http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp 
 

City/Country Bz (nT) Bx (nT) I (degrees) 
Anchorage 53,720 14,455 74.9 

Boston 48,991 19,143  
Miami 37,081 25,208  

San Diego 39,940 24,419  
Honolulu 21,617 27,304  
Equador 10,492 27,431  

Santiago, Chile -13,433 20,247  
Buenos Ares, Argentina -14,282 18,133  

Cairo, Egypt 30,279 30,940  
Paris, France 43,188 20,733  
Rome, Italy 39,243 24,419  

Panama City, Panama 20,342 27,677  
Cayenne, French Guiana 8,292 26,525  

La Paz, Bolivia -3,713 23,438  
Churchill, Canada 58,692 9,253  
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9 Answer Key 

 
 

City/Country Bz (nT) Bx (nT) I (degrees) 
Anchorage 53,720 14,455 74.9 

Boston 48,991 19,143 68.7 
Miami 37,081 25,208 55.8 

San Diego 39,940 24,419 58.6 
Honolulu 21,617 27,304 38.4 
Equador 10,492 27,431 20.9 

Santiago, Chile -13,433 20,247 -33.6 
Buenos Ares, Argentina -14,282 18,133 -38.2 

Cairo, Egypt 30,279 30,940 44.4 
Paris, France 43,188 20,733 64.4 
Rome, Italy 39,243 24,419 58.1 

Panama City, Panama 20,342 27,677 36.3 
Cayenne, French Guiana 8,292 26,525 17.4 

La Paz, Bolivia -3,713 23,438 -9.0 
Churchill, Canada 58,692 9,253 81.1 

 
Problem 1: Solve using trigonometry I = arctan(Bz/Bx):  
 
Example    Anchorage:   I = arctan(Bz/Bx) = arctan(53720/14455) =  74.9 degrees 
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10The North and South Magnetic Poles

 The aurora form a glowing halo of light above Earth’s North and South 
Polar Regions. Because aurora are caused by charged particles that are 
affected by Earth’s magnetic field, the Auroral Ovals are centered in Earth’s 
magnetic poles, not its geographic poles about which the planet rotates. 
 The photos below, were taken of the two polar aurora by the IMAGE 
FUV (Left) and the Polar (right) instruments. The data has been colorized to 
bring out details of interest to scientists. 

Problem  1 -  The South Magnetic Pole is located in the Northern Hemisphere. 
From the appropriate image above, locate this magnetic pole on a map. 
 
 
 
 
 
Problem  2 --  The North Magnetic Pole is located in the Southern Hemisphere. 
From the appropriate image above, locate this magnetic pole on a map. 
 
 
 
 
 
 
Problem  3: -- From the geographic clues in the map, estimate the diameter of the 
auroral oval in kilometers. (Hint: The radius of Earth is 6,378 kilometers) 
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Answer Key                                           10 

 

Problem 1 -  The South Magnetic Pole is located in the Northern Hemisphere. From the 
appropriate image above, locate this magnetic pole on a map. 
 
Answer: The right-hand image from the Polar satellite shows the Arctic Region and the 
contours of Greenland and North America/Canada. From a world map, students can 
estimate that the center of the auroral oval is near longitude 105 West  and latitude 83 
North) 
 
Problem 2 --  The North Magnetic Pole is located in the Southern Hemisphere. From the 
appropriate image above, locate this magnetic pole on a map. 
 
Answer: The left-hand image from the IMAGE satellite shows Antarctica. The center of 
the auroral oval is near longitude 110 West  and latitude 72 South. 
 
 
Problem 3: -- From the clues in the map, estimate the diameter of the auroral oval in 
kilometers. (Hint: The radius of Earth is 6,378 kilometers) 
 
Answer: The longitude and latitude coordinate grids shown in each image  cover the 
Earth, so the maximum diameter of the grid is the diameter of Earth. Using a millimeter 
ruler, the diameters are (South: Left) = 78 mm and (North; right) = 77 mm. 
 
Calculate the scale of each image (kilometers per millimeter) : North = 6378 km/77mm = 
83 km/mm; South = 6378 km/78 mm = 82 km/mm 
 
Multiply by the diameter of  each auroral oval in millimeters. For the north polar aurora, its 
diameter is about 6400 kilometers. For the south polar aurora, the diameter is about  
6,000 kilometers. 
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11 The Speed of Magnetic Pole Wander 

 Several centuries ago, mapmakers noticed that the compass bearings on their 
navigation charts slowly changed in time. This forced mapmakers to re-draw their maps 
every few decades, and even more frequently for selected locations. The reason for this 
change, called secular variation, is that the entire magnetic field of Earth is slowly shifting 
so that its poles 'wander' across the surface. Using modern instruments, we can measure 
this movement from year to year. The following table shows the position of the magnetic 
North Pole over the past 100 years.   

 Year 
(AD) 

Lat. Long. 

A 1900 +70.5N 96.2W 
B 1910 +70.8N 96.7W 
C 1920 +71.3N 97.4W 
D 1930 +72.3N 98.7W 
E 1940 +73.3N 99.9W 
F 1950 +74.6N 100.8W
G 1970 +75.9N 101.0W
H 1980 +76.9N 101.7W
I 1990 +78.1N 103.7W
J 2000 +81.0N 109.7W

 In the following problems, assume that on this portion of the polar grid that 1 degree of 
latitude equals 110 kilometers. 
 
Problem 1 - Plot the pole locations for the tabulated years. 
 
 
 
Problem 2 - About how far did the magnetic North Pole move between; A) 1900 and 1920? B) 
1990 and 2000? 
 
 
 
Problem 3 - How far did the magnetic North Pole move in meters in one year between; A) 1900 
and 1920? B) 1990 and 2000? 
  
 
 
Problem 4 - Approximately how far did the magnetic North Pole move per day between; A) 1900 
and 1920? B) 1990 and 2000? 
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11 Answer Key 

 The data used in the table comes from the International Geomagnetic Reference Field 
version 10 
 
Problem 1 - Plot the pole locations for the tabulated years. Answer: See figure below. 
 
 
Problem 2 - About how far did the magnetic North Pole move between; A) 1900 and 1920? B) 
1990 and 2000? Answer: A) Scaling the interval from the plotted graph, the distance is about 
110 km.  B) The distance is about 340 km. 
 
 
Problem 3 - How far did the magnetic North Pole move in meters in one year between; A) 
1900 and 1920? B) 1990 and 2000? Answer: A) speed = 110 km/10 yrs =  11 km/year or 
11000 meters/year   B) speed = 340 km/10 years = 34 km/yr = 34,000 meters/year 
 
  
 
Problem 4 - Approximately how far did the magnetic North Pole move per day between; A) 
1900 and 1920? B) 1990 and 2000? Answer: A) 11000 meters/year x (1 year/365 days) =  30 
meters/day.   B) 34000 meters/year x (1 year/365 days) = 93 meters/day 
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12 Earth's Declining Magnetism 

Not only do the magnetic poles 
of Earth drift over time, but the entire 
strength of Earth's magnetic field 
increases and decreases.  The 
strength of this field is commonly 
measured in terms of a quantity called 
VADM with the units of Ampere meter2 
(Am2). For example, a 1 Ampere 
current circulating in a closed circle 
with an area of 1 meter2 has a VADM 
of 1 Am2. 
 The top figure shows the 
variations in Earth's VADM since end 
of the last Ice Age about 12,000 years 
ago. The gray area represents the 
range of measurement uncertainty. 
The current era is to the far-right of the 
plot.  
 The lower figure shows the 
most recent changes since 1800 using 
a slightly different unit scale. 
 
Problem 1 - During the last 12,000 
years, what has been the range in 
the VADM dipole strength as 
indicated by the black line?  
 
Problem 2 - In about how many 
years from the present would you 
predict that the VADM will reach the 
lower end of its range in the last 
12,000 years? 
 
Problem 3 - Based on the slope of 
the line in the lower figure, what is 
the current rate-of-change of the 
magnetic field in terms of percent 
per century? 
 
Problem 4 - If the decline continues 
at this pace, by what year will the 
strength of Earth's main dipole field 
be near-zero? 
 
Problem 5 - Comparing the trends 
displayed by the upper plot with the 
lower graph, do you think the 
current rate-of-change exceptional? 
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12 Answer Key 

 Data from "Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr" by  
Mads Faurschou Knudsen, Peter Riisager, Fabio Donadini, Ian Snowball,  Raimund Muscheler, Kimmo 
Korhonen, and Lauri J. Pesonen in the journal 'Earth and Planetary Science Letters' ,Vol. 272, pp 319-
329. 
 
Teacher note: VADM  is an acronym for "Virtual Axial Dipole Moment" 
 
Problem 1 - During the last 12,000 years, what has been the range in the VADM 
dipole strength as indicated by the black line?  Answer: Estimating from the lowest and 
highest values reached by the black line we get   a range from 7.0 to 11.5 x 1022 Am2.  
 
Problem 2 - In about how many years from the present would you predict that the 
VADM will reach the lower end of its range in the last 12,000 years? Answer: The 
'current era' are the years to the far-right in the top graph. The trend shows a slope of  
10.5 to 8.5 from about 1000 years ago to  250 years ago. The slope is then  (8.5 - 
10.5)/(250 - 1000) =  0.003/year.  The lower limit of the range is at 7.0 which is 1.5 
below the last plotted point that occurred 250 years ago, so    -250 + 1.5/0.003 = 500 
years from now.  Students may also solve this problem graphically with a ruler by 
extending the line for 'VADM=7.0' to where it meets up with the trend line from the last 
1000 years of data. 
 
 
Problem 3 - Based on the slope of the line in the lower figure, what is the current rate-
of-change of the magnetic field in terms of percent per century? Answer: The decrease 
was from 8.6 to 8.0 over 170 years. This is a percentage change of  0.6/8.6 x 100% = 
6.9% over 1.7 centuries and so the rate of decrease has been  6.9%/1.7C = 4% per 
century. 
 
Problem 4 - If the decline continues at this pace, by what year will the strength of 
Earth's main dipole field be near-zero? Answer: To go from 8.0 to 0.0 at a rate of 
4%/100 years will take  100% / 4% = 25 centuries or 2500 years.  Adding this to the 
current year, 2009 gives us the year  4509 AD. Students answer will vary depending 
on the actual current year. 
 
Problem 5 - Comparing the trends displayed by the upper plot with the lower graph, do 
you think the current rate-of-change exceptional? Answer: This question asks whether 
there have been other times in the last 12,000 years when the SLOPE of the data has 
been at least as steep as the current slope (i.e. rate of change). Some of the line 
slopes around 9000 years  ago seem, at least for a limited time, to be as rapid as the 
current era. The period between 2000 and 3000 years ago also shows a similar rapid 
decline. The current era does seem unique in terms of the duration of this decline 
which has lasted for  1,500 years. 
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13 Magnetic Storms - I 

 In addition to the very slow changes that take years or centuries, Earth's 
magnetic field also changes over times as short as seconds to hours. Most of these 
changes are very sudden and infrequent, so scientists have come to call them 
'magnetic storms'. They are discovered by measuring the strength of Earth's 
magnetic field at ground-level, with an instrument called a magnetometer.  The 
Earth's field has an average strength of about 50,000 nano-Teslas (nT), but magnetic 
storms causes changes as small as 1 nT to occur.  
 The figure above shows a 24-hour long magnetogram that presents the 
measurements made every minute of the day of Earth's  Bx magnetic field 
component. Recall that Earth's magnetic field can be described by three numbers 
(called components) measured along a north-south line (Bx), along an east-west line 
(By), and along the vertical direction (Bz).  The horizontal axis in the magnetogram is 
marked every 3 hours in Universal Time (UT). The vertical axis is a measurement of 
Bx in units of nanoTeslas. For example, at 12:00 UT the value for Bx was about 5500 
nT. 
 
Problem 1 - During what period of the day was Earth's magnetic field relatively quiet 
and undisturbed, and want was the average vale for Bx during this time? 
 
 
Problem 2 - What was the Bx value near 24:00 UT in units of milliGauss? (Note 1 
Tesla = 10,000 Gauss). 
 
 
Problem 3 -  A geophysicists looks at this magnetogram and sees that there were 
three distinct storm events during this day. These are often called magnetic sub-
storms. During what time intervals did they occur, and what was the highest or lowest 
value for Bx that was reached? 
 
 
Problem 4 - Earth's magnetic field can become dilated or compressed for brief 
periods of time. Which of the three storm events might correspond to compressions 
or dilations? 
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Answer Key 13 
 Problem 1 - During what period of the day was Earth's magnetic field relatively quiet and 

undisturbed, and want was the average vale for Bx during this time? Answer: The graph is 
mostly flat between 00:00 and 09:00 UT with an average value close to about 5900 nT. 
 
 
Problem 2 - What was the Bx value near 24:00 UT in units of milliGauss? (Note 1 Tesla = 
10,000 Gauss). Answer:  The graphed value is near 5800 nT then   5800 nT x (1.0 
T/1,000,000,000 nT) x (10,000 G/1 T) = 0.058 Gauss. Then  0.058 Gauss x ( 1000 
milliGauss/1 Gauss) = 58 milliGauss. Depending on estimation methods used, students 
answers should be close to this value. The important thing is the unit conversion. 
 
 
Problem 3 -  A geophysicists looks at this magnetogram and sees that there were three 
distinct storm events during this day. These are often called magnetic sub-storms. During what 
time intervals did they occur, and what was the highest or lowest value for Bx that was 
reached?   Answer; The three largest variations occurred approximately between  10:00 - 
13:00 UT,  15:00 - 18:00 UT and  18:00 - 19:30 UT. 
 
 
Problem 4 - Earth's magnetic field can become dilated or compressed for brief periods of time. 
Which of the three storm events might correspond to compressions or dilations? Answer: 
Students should be able to figure out that, when a field is 'dilated' it becomes weaker, and 
when it is compressed it becomes stronger. The possible interpretations of the three sub-
storms is that the field was dilated between 10:00-13:00 UT, and compressed in two separate 
episodes between 15:00-18:00 UT and 18:00-19:30 UT. 
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14                    Magnetic Storms - II 

 Magnetic observatories generate a huge amount of data – far too 
much for anyone to digest easily. To help scientists take a quick measure 
of Earth’s magnetic storminess, the magnitude of the disturbance in 
Earth’s magnetic field is measured at 13 observatories and then averaged 
together.  This average value is then reported every three hours as the Kp 
Index, which is then converted to a range from 0 to 9. 
 The bar graph above shows the changes in this index during the 
time of a major magnetic storm on November 20, 2003.  Prior to the 
storm, Earth’s magnetic field was in a typically disturbed state with 
variations in Kp from 2 to 4. But after a solar disturbance collided with 
Earth's magnetic field, the variations jumped to a Kp of 7 and higher within 
a few hours. This particular storm caused spectacular Northern Lights 
seen all across North America and Northern Europe.

Problem 1 – If each bar is 3-hours wide, how long did the storm last above a 
level of Kp = 4? 
 
Problem 2 – At what time did the storm reach its maximum Kp value? 
 
Problem 3 -  If New York City is 4 hours behind Universal Time, what time 
was it in New York during the height of the storm? 
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    Answer Key                                                14 

 

Question 1 – If each bar is 3-hours wide, how long did the storm last? 
Answer: The red portion of the bar graph which covers the most intense 
phase of the storm extends 9 bars or 9 x 3h = 27 hours! 
 
 
Question 2 – At what time did the storm reach its maximum Kp value? 
Answer: This occurred at  the bar which spans the times 19:00 to 21:00 UT 
so you can take the start time as 19:00 UT, or the end time 21:00 UT or the 
mid-point time of the bar of 20:30 UT. 
 
 
Question 3 -  If New York City is 4 hours behind Universal Time, what time 
was it in New York during the height of the storm? 
Answer: Taking the mid-time of 20:30 UT, the Eastern Standard Time in 
New York would be  20:30 – 4:00 = 16:30 EST or 4:30 PM. 
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15 Magnetic Field Arithmetic - with a twist! 

Like any other physical 
object, you can add and subtract 
magnetic fields in much the same 
way you add and subtract money, 
water, or acorns!  The difference is 
that a magnetic field doesn't exist at 
one point in space like a dollar-bill, or 
an acorn! 
 When you place two bar 
magnets close together, the 
magnetic fields automatically add 
and subtract at each point in space to 
create the new, combined, magnetic 
field. 
 The figure to the left shows 
an example of magnetic addition for 
North and South polarities. Notice 
that the sign of the magnetic 
intensity, Bx, indicates the polarity. 
Also notice that the larger the 
magnitude of Bx, the more magnetic 
lines of force we draw in the box. 
Each box represents a region of 
space that can be 1 centimeter 
across (bar magnet) , or 100 million 
kilometers across (the sun). It all 
depends on how big the magnetic 
field is in space!

Problem 1 -  Add the following magnetic fields, and state the polarities of the two 
magnetic fields, and the final polarity of the resulting magnetic field: 
A)    Bx = +13 Gauss                         Bx = - 7 Gauss 
B)    Bx = -45 Gauss                          Bx = -15 Gauss 
C)    Bx = +0.0035 Gauss                  Bx = +0.0070 Gauss 
D)    Bx = -21 Gauss                          Bx = +21 Gauss 
E)    Bx = -1,457,981 Gauss              Bx = +1,457,900 Gauss 
 
Problem 2 - A student decides to combine two bar magnets to make a stronger 
magnetic field at the location of a compass. At the location of the compass, 
Magnet-A has a strength of Bx = -25.2 Gauss and Magnet B has a strength of 
Bx= -25.2 Gauss.  
A) Are the magnets oriented the same way?  
B) What is the new intensity of the combined field at the location of the compass?  
C) What is the polarity of the combined field? 
D) Suppose one of the magnets was flipped in its North-South orientation. What 
would be the strength of the magnetic field at the compass location, and would 
the compass continue to operate? 
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Answer Key 15 
 Problem 1 -  Add the following magnetic fields, and state the polarities of the two 

magnetic fields, and the final polarity of the resulting magnetic field: 
A)    Bx = +13 Gauss                         Bx = - 7 Gauss 
13 Gauss North plus  7 Gauss South equals    + 13 - 7 = +6  Gauss  which is 6 Gauss 
North polarity 
 
B)    Bx = -45 Gauss                          Bx = -15 Gauss 
45 Gauss South plus 15 Gauss South equals    -45 + -15 = -60 Gauss or 60 Gauss 
South polarity 
 
C)    Bx = +0.0035 Gauss                  Bx = +0.0070 Gauss 
0.0035 Gauss North plus  0.0070 Gauss North equals     +0.0105 Gauss or  0.0105 
Gauss North polarity 
 
D)    Bx = -21 Gauss                          Bx =  = +21 Gauss 
21 Gauss South plus 21 Gauss North equals    -21 + 21 = 0 Gauss or 0 Gauss  with no 
polarity 
 
E)    Bx = -1,457,981 Gauss              Bx = +1,457,900 Gauss 
1,457,981 Gauss South plus 1,457,900 Gauss North equals 81 Gauss South polarity 
 
Problem 2 - A student decides to combine two bar magnets to make a stronger 
magnetic field at the location of a compass. At the location of the compass, Magnet-A 
has a strength of Bx = -25.2 Gauss and Magnet B has a strength of 
Bx= -25.2 Gauss.  
A) Are the magnets oriented the same way?  
Answer: Yes because the sign of the Bx is the same at the same location in space. 
 
B) What is the new intensity of the combined field at the location of the compass?  
Answer:  Bx = -25.2 + (-25.2) = -50.4 Gauss. 
 
C) What is the polarity of the combined field? Answer: The sign of Bx is negative so 
the polarity is South. 
 
D) Suppose one of the magnets was flipped in its North-South orientation. What would 
be the strength of the magnetic field at the compass location,  and would the compass 
continue to operate? 
Answer: At the location of the compass, the polarity of one of the magnets would be 
reversed from South to North. The values for Bx would be  Bx = -25.2 Gauss and  Bx = 
+25.2 Gauss.  Adding these two together would give Bx = -25.2 + (+25.2) = 0 Gauss, 
so at the compass, the magnetic fields would cancel with no net polarity. The compass 
would not sense any magnetic field and so would not operate. 
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16 Magnetic Arithmetic - II 

A real magnetic field exists in 3-
dimensions, and this makes adding them a 
bit more challenging. Instead of just one 
number to keep track of, you have three: 
One for each of the three directions in 
space. 
 Although physicists can draw the 
magnetic field at each location in space, 
and then add them geometrically, it is 
much easier to just work with their 
'magnetic coordinates'.  These are written, 
at each point in space (X,Y,Z) as a set of 
three numbers called the magnetic 
components: (Bx, By, Bz). For example, 
(+3.0 G, -2.0 G, -10.5 G) are the 
components of the magnetic field, and Bx 
= +3.0 means that along the x-direction, it 
has a strength of 3.0 Gauss pointed 
Northwards. 
 The figure to the left shows how to 
add two 3-dimensional magnetic fields, A 
and B, using their intensity components. 

A = ( a, b, c ) 
 
B = ( d, e, f ) 
 
 
S = A+B =  (a+d, b+e, c+f)
 
 
Sx  = a + d 
Sy  = b + e 
Sz  = c + f 

Problem 1 - Add the following magnetic fields for a particular point in space: 
A)   (-2.0, + 3.0, -5.0)             and      (+5.0, -3.0, -4.0) 
B)   (+5.0, -4.0, + 7.0)            and      (-3.0, +2.0, -6.0) 
C)   (+13.0, -3.5 ,-9.6)            and      (-6.5 ,-3.0, +3.1) 
D)   (-1054, +1203, -4529)     and      (+235, -1123, -471) 
 
 
 
Problem 2 - Which of the two combinations (A + B) has the strongest combined 
field? 
1)  A =  (-3.0, +4.0, -5.0)         B = (+5.0, +1.0, +10.0) 
2)  A = (+145, - 350, -1100)    B =  (-120, +375, +1125) 
 
 
 
Problem 3 - What might you suppose the rules are for subtracting magnetic 
fields?  Create an example of subtracting two magnetic fields A and B. 
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Answer Key 16 
 Problem 1 - Add the following magnetic fields for a particular point in space: 

A)   (-2.0, + 3.0, -5.0)             (+5.0, -3.0, -4.0) 
Answer: Sx = -2.0 + (+5.0) = +3.0      Sy = +3.0 + (-3.0) = 0.0    Sz = -5.0 + (-4.0) = -9.0 
         So S = (+3.0, 0.0, -9.0) 
 
B)   (+5.0, -4.0, + 7.0)            (-3.0, +2.0, -6.0)             Answer:  S = (+2.0, -2.0, +1.0) 
C)   (+13.0, -3.5 ,-9.6)            (-6.5 ,-3.0, +3.1)             Answer: S = (+6.5, -6.5, -6.5) 
D)   (-1054, +1203, -4529)     (+235, -1123, -471)        Answer: S = (-819, +80, -5,000) 
 
 
 
Problem 2 - Which of the two combinations (A + B) has the strongest combined field? 
1)  A =  (-3.0, +4.0, -5.0)         B = (+5.0, +1.0, +10.0)            S = (+2.0, +5.0, +5.0) 
2)  A = (+145, - 350, -1100)    B =  (-120, +375, +1125)      S = (+25.0, +25.0, +25.0) 
Answer:  The second combination produces a resulting field in which each component 
is larger than the corresponding components of the first combination, so the second 
combination leads to the stronger field. 
 
 
Problem 3 - What might you suppose the rules are for subtracting magnetic fields?  
Create an example of subtracting two magnetic fields A and B. 
Answer:  In the case of subtraction,  
 
If    A = ( a, b, c )      and    B = ( d, e, f ) 
 
Then         S = A-B =  (a-d, b-e, c-f) 
And so, 
                   Sx  = a - d 
                   Sy  = b - e 
                   Sz  = c - f 
 
An example would be  A = (+3.0, -4.0, +5.0)   and B = (-6.0, +8.0, +10.0) 
 
So Sx = a - d =    +3.0 - (-6.0) =  +3.0 + 6.0 = +9.0 
      Sy = b - e =    -4.0 - (+8.0) = -4.0 - 8.0 = -12.0 
      Sz = c - f =    +5.0 - (+10.0) = +5.0 - 10.0 = -5.0 
 
And so the resulting magnetic field would have a strength of S = (+9.0, -12.0, -5.0) at a 
particular location in space. 
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17 Magnetic Fields and the Pythagorean Theorem 

 Imagine that you have 
traced out the magnetic field 
from a bar magnet on a 2-
dimensional sheet of paper. 
How do you figure out how 
strong the field is at a 
particular point in space? 
 Once you know the 
components to the field at that 
point, (Bx, By), it's a piece of 
cake! That's because Bx and 
By are actually the legs of a 
right-triangle! The total 
strength of the field is just the 
hypotenuse of that triangle, 
whose length you can figure 
out, either by constructing a 
scaled drawing, or using the 
Pythagorean Theorem. 

Problem 1 - Draw a scaled model for the following problems and determine the 
magnitude  (i.e. the absolute magnitude) of the total field defined by the two 
components to an accuracy of one decimal point. (Hint: use a scale of 1 Gauss = 1 
Centimeter).    
 
A) Bx=  +3.0 Gauss    and    By = +4.0 Gauss 
B) Bx = +1.0 Gauss    and    By = +1.0 Gauss 
C) Bx =  -3.0 Gauss    and    By = +4.0 Gauss 
 
 
Problem 2 - The Pythagorean Theorem states that the length of the hypotenuse of 
a right triangle equals the square-root of the sum of the squares of the other two 
sides.  Use the 'PT' to calculate the magnitude of the magnetic field, B,  indicated 
by the following components to an accuracy of one decimal point: 
 
A) Bx=  +3.0 Gauss    and    By = +4.0 Gauss 
B) Bx = +1.0 Gauss    and    By = +1.0 Gauss 
C) Bx =  -3.0 Gauss    and    By = +4.0 Gauss 
D)  B = (-2.5, +3.8) 
E)  B =  (+12.5, -2.45) 
 
 
Problem 3 - What is the magnitude of the sum, S, of the following pairs of magnetic 
fields? 
A)   A = (-2.0, +5.9)   and B = (+5.0, +6.0) 
B)   A = (+123.0, +114.0)  and  B = (+27.0, -100.0) 
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Answer Key 17 
 Problem 1 - Draw a scaled model for the following problems and determine the magnitude of 

the total field defined by the two components to an accuracy of one decimal point. (Hint: use a 
scale of 1 Gauss = 1 Centimeter).    Answer: Students may use graph paper and draw the Bx 
and By axis at a scale of 1 cm = 1 Gauss per division. They will draw the triangle with the 
measured sides, then with a ruler, measure the length of the hypotenuse in centimeters. This 
will then be converted into Gauss units  (1 cm = 1 Gauss) to obtain the answer. 
 
A) Bx=  +3.0 Gauss    and    By = +4.0 Gauss          Answer:  5.0 Gauss.   
B) Bx = +1.0 Gauss    and    By = +1.0 Gauss          Answer:   1.4 Gauss.  
C) Bx =  -3.0 Gauss    and    By = +4.0 Gauss         Answer:   5.0 Gauss.  
 
Note that the problem is asking for the magnitude of the field so the sign does not matter.  
 
 
 
Problem 2 - The Pythagorean Theorem states that the length of the hypotenuse of a right 
triangle equals the square-root of the sum of the squares of the other two sides.  Use the 'PT' 
to calculate the magnitude of the magnetic field, B,  indicated by the following components to 
an accuracy of one decimal point: 
 
A) Bx=  +3.0 Gauss    and    By = +4.0 Gauss   Answer:  B = (3.02 + 4.02 )1/2 = 5.0 Gauss 
B) Bx = +1.0 Gauss    and    By = +1.0 Gauss    Answer: B = (2)1/2 = 1.4 Gauss 
C) Bx =  -3.0 Gauss    and    By = +4.0 Gauss    Answer:  B = ((-3.0)2 + 4.02 )1/2 = 5.0 Gauss 
D)  B = (-2.5, +3.8)  Answer:  B = ((-2.5)2 + 3.82 )1/2 = 4.5 Gauss 
E)  B =  (+12.5, -2.45)  Answer:  B = ((12.5)2 + (-2.45)2 )1/2 = 12.7 Gauss 
 
 
 
Problem 3 - What is the magnitude of the sum, S,  of the following pairs of magnetic fields? 
A)   A = (-2.0, +5.9)   and B = (+5.0, +6.0) 
Answer S = A + B = (+3.0, +11.9)  so  the magnitude of S = ((3.0)2 + (11.9)2 )1/2 = 12.3 Gauss 
B)   A = (+123.0, +114.0)  and  B = (+27.0, -100.0) 
Answer S = A + B = (+150.0, +14.0)  so  the magnitude of S = ((150)2 + (14)2 )1/2 = 150.7 
Gauss 
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18Applications of the Pythagorean Theorem - Magnetism 
 

 Unlike temperature, magnetism requires three numbers to 
define the strength of its field in space.  Scientists call magnetism 
a Vector quantity because it is defined by both its magnitude at a 
point in space, and its direction at that point, given by the 
coordinate (X, Y, Z).  The Pythagorean Theorem is used to 
calculate the magnitude (or total strength) of the magnetic field 
from the separate Bx, By and Bz quantities that make up its 
description as a field in 3-dimensional space. To find the Bx, By 
and Bz components of Earth’s magnetic field  (in units of 
nanoTeslas, nT) where you live, visit the International 
Geomagnetic Reference Field Model  (Part 2 Form) 

http://nssdc.gsfc.nasa.gov/space/model/models/igrf.html
Enter the year (2004) and the requested geographic latitude, 
longitude (in degrees, minutes and seconds – D M S entries in 
table) and elevation (Use 0.0 km for table).  You can find the 
geographic coordinates for a specific location at  

http://geonames.usgs.gov 
Follow ‘Query  GNIS” to the input form. Select ‘Civil’ for a town 
name.  

City Longitude 
D    M    S 

Latitude 
D    M    S 

Bx 
(nT) 

By 
(nT) 

Bz 
(nT) 

Total B 
(nT) 

Chicago 87     54    55   41     50    05 26600 1234 48620 55434 
Boston 71     05   00 42    18    00 25251 2234 46676  
Miami 80     32   00 25    37    00 36274 0.2 28396  
Hollywood 118   20   00 34    01    00 32161 -2684 39236  
Bangor 68     47   15 44    49    56 23437 2600 48244  
Kansas City 94     43   37 39    07    06 28846 365 46535  
Sioux Falls 96     43   48 43    32    48 25602 283 50988  
Spokane 117   22   00 47    37    00 22977 -3263 53054  
Provo 103   52   06 43   10     02 26045 -875 50767  
Anchorage 149   15   02 61   10     00 16377 -3572 53739  
Honolulu 154   53   24 19   33    15 32644 1402 14594  
Sedona 111   47   35 34   50    38 31818 -1978 41379  

Use the Pythagorean Theorem to fill-in the last column of the table 

The Pythagorean 
Theorem in 3-dimensions 

is  

Problem  1 -  What cities have the highest and lowest magnetic field (B) strengths? 
 
Problem  2 -  What is the average B value of Earth’s magnetic field for all locations? 
 
Problem  3 – Some adults think that Sedona Arizona has special ‘powers’. How does the 
magnetism at this location compare to other locations in the table? 
 
Problem  4:  Plot the By values on a map. What pattern do you see? 
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Answer Key                                                    18 

 
City Longitude 

D  M  S 
Latitude 

D M S 
Bx 

(nT) 
By 

(nT) 
Bz 

(nT) 
Total B 

(nT) 
Chicago 87   54   55 41 50 05 26600 1234 48620 55434 
Boston 71   05   00 42 18 00 25251 2234 46676 75116 
Miami 80   32   00 25 37 00 36274 0.2 28396 65148 
Hollywood 118 20   00 34 01 00 32161 -2684 39236 71847 
Bangor 68   47   15 44 49 56 23437 2600 48244 75941 
Kansas City 94   43   37 39 07 06 28846 365 46535 77430 
Sioux Falls 96   43   48 43 32 48 25602 283 50988 80688 
Spokane 117 22   00 47 37 00 22977 -3263 53054 81894 
Provo 103 52   06 43 10 02 26045 -875 50767 80701 
Anchorage 149 15   02 61 10 00 16377 -3572 53739 79609 
Honolulu 154 53   24 19 33 15 32644 1402 14594 50607 
Sedona 111 47   35 34 50 38 31818 -1978 41379 73871 
 

Problem  1 -  What cities have the highest and lowest magnetic field (B) strengths? 
Answer:  The city with the highest total magnetic field strength is Spokane, Washington 
(81894 nT). The city with the smallest total magnetic field strength is Honolulu, Hawaii 
(50607 nT) 
 
Problem  2 -  What is the average B value of Earth’s magnetic field for all locations? 
Answer :  (55434 + 75116 + 65148 + 71847 + 75941 + 77430 + 80688 + 81894 + 
                  80701 +  79609 + 50607 + 73871 ) / 12 =   868286/12 = 72357 nT 
 Remember to have the students give the answer in the correct physical units. 
 
 
Problem 3 – Some adults think that Sedona Arizona has special ‘powers’. How does the 
magnetism at this location compare to other locations in the table? 
Answer:  There are several things the student can note. 1) It has only the 8th strongest 
magnetic field out of 12 cities; 2) It has the third lowest Bz value (41379 nT); and 3) It has the 
fourth-lowest By value (-1978). None of these are as remarkable as what we find among the 
other large cities in this random sample. 
 
Problem 4:  Plot the By values on a map. What pattern do you see? 
Answer: The most obvious thing the students should notice is that:  
1) The By magnetic values are always much smaller than for the Bx and Bz magnetic 

components. In fact they are typically only about 10% of the other two components;  
2)  The values to the east of latitude 100 to 105 degrees are positive. The values to the west 
are negative. Note, the reason for this is that the longitude of the magnetic pole is 105 
degrees, so this is the ‘axis of symmetry’ for these values. 
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19 Magnetic Algebra 

A magnetic field is defined at each 
point in space (x,y,z) in terms of its 
strengths in Teslas or Gauss units, but it 
can be a nuisance to have to carry around 
large tables that give specific values at 
each point. In fact such a table would have 
to be infinite in size! 
 Luckily, magnetic fields can be 
described mathematically by using specific 
equations; one equation for each of its 
three components, (Bx, By, Bz), in 3-
dimensional space. In the function 
notation:  
         Bx = f(x,y,z)  
         By = g(x,y,z) 
         Bz = h(x,y,z) 
 Now all we need to do is to create 
the particular functions to give us the 
magnetic field values at each point. This 
can be done by 'fitting' various functions to 
the data to fine the best match, or by using 
physics to actually calculate what the 
functions should look like along each axis. 
Both techniques are very common. 

 
This is a mathematical model describing Earth's  
magnetic field based upon functions computed 
for specific points in space. 
(Courtesy  Gary Glatzmaier, Los Alamos)

Problem 1 - Create a short table evaluated at 5 points of your choosing, of the 
values for Bx, By, Bz and the magnitude of B for the indicated functional forms. 
Round all values to the nearest 0.1 place: 
 
A)   Bx = x;     By = 0;     Bz = y 
 
B)   Bx = yz,   By = xz     Bz = 3xy 
 
C)   B = (x+5,  xy-z,  y2+3) 
 
 
 
 
Problem 2 - If a magnetic field is given by B = (x - 3, y + 2, z - 8), find all of the 
points in space (x,y,z) where the field vanishes (i.e all three components are 
simultaneously zero). 
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Answer Key 19 
 Problem 1 - Create a short table evaluated at 5 points of your choosing, of the values 

for Bx, By, Bz and the magnitude of B for the indicated functional forms: 
 
A)   Bx = x;     By = 0;     Bz = y 

X Y Z Bx By Bz B 
0 0 2 0 0 0 0 
1 -1 5 1 0 -1 (2)1/2  =1.4 
3 2 -2 3 0 2 (13)1/2 = 3.6 
-5 4 3 -5 0 4 (41)1/2 = 6.4 
-3 -3 2 -3 0 -3 3(2)1/2 = 4.2 

Note: B = (bx  +by  + Bz )
 

2 2 2 1/2

 
B)   Bx = yz,   By = xz     Bz = 3xy 

X Y Z Bx By Bz B 
0 0 2 0 0 0 0 
1 -1 5 -5 5 -3 (34)1/2 = 5.8 
3 2 -2 -4 -6 18 (376)1/2 = 19.4 
-5 4 3 12 -15 -60 (3969)1/2 = 63.0 
-3 -3 2 -6 -6 27 (801)1/2 = 28.3 

 
2C)   B = (x+5,  xy-z,  y +3) 

X Y Z Bx By Bz B 
0 0 2 5 -2 3 (38)1/2 = 6.2 
1 -1 5 6 -6 4 (88)1/2 = 9.4 
3 2 -2 8 8 7 (177)1/2 = 13.3 
-5 4 3 0 -23 19 (890)1/2 = 29.8 
-3 -3 2 2 7 12 (197)1/2 = 14.0 

 
Note to Teacher;  The computed magnetic values are in magnetic units such as Gauss 
or Teslas, not in terms of the physical coordinate units such as centimeters or meters. 
 
 
 
Problem 2 - If a magnetic field is given by B = (x - 3, y + 2, z - 8), find all of the points 
in space (x,y,z) where the field vanishes (i.e all three components are simultaneously 
zero). 
 
Answer:   (+3, -2, +8)   since if x=3, y=-2 and z=8    B = (0,0,0) and so B vanishes 
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Parametric  Functions and Substitution 20 
 Error!

 
 
 
 
 
 
 
 
 

 
Image courtesy Dick Hutchinson 
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        Our sun is an active star that ejects a constant stream 
of particles into space called the 'solar wind'. From time to 
time, magnetic activity on its surface also launches fast-
moving clouds of plasma into space called 'coronal mass 
ejections' or CMEs.  
        When some of these clouds directed at Earth arrive 
after traveling 93 million miles (150 million km), they cause 
intense disturbances in Earth's magnetic field. Since the 
1800's, these disturbances have been called 'magnetic 
storms', because instruments on Earth can measure the 
strength of these disturbances, and they resemble storms 
in an otherwise very calm magnetic field.  
        Scientists measure the strength of these magnetic 
storms in terms of the size of the change they make in the 
Earth's magnetic field. The strength of Earth's field at the 
ground is about 0.7 Gauss or 70,000 nanoTeslas. The 
most intense magnetic storms can change the ground-level 
field by several percent.  

 
 

        According to research by  V.  Yurchyshyn,  H. Wang and  V. Abramenko, which was published in 2004 
in the journal  Space Weather (vol. 2) the relationship between the magnetic field disturbance, Dst and the Z-
component of the interplanetary magnetic field, Bz, is given by: 
 

(1)         Dst = -2.846  + 6.54 Bz  - 0.118Bz
2  - 0.002Bz

3 

 
where Dst and Bz are measured in nanoTeslas (nT). 
 
        In 2004, W. D. Gonzales and his colleagues published a paper  in the Journal of Atmospheric and Solar 
Terrestrial Physics, in which they determined a relation between the speed of a solar coronal mass ejection 
V, in km/sec, and the strength of Dst  in nT according to 
 

(2)                               Dst = 0.00052 x (0.22 V + 340)2

 
        The relationship between the travel time to Earth from the sun and the speed of the CME was 
determined from catalogs of CME events by M. J. Owens and P. J. Cargill  in research published  in 2002  in 
the Journal of Geophysical Research (vol. 107, p. 1050) in terms of  the transit time in days, T, for these 
coronal mass ejections and their speed, V, in km./sec by 
 

(3)                                          T  =   -0.0042 x V  + 5.14 
 
They also found that the maximum interplanetary magnetic field strength of the CME was given by 
 

(4)                                               BT =  0.047 V  + 0.644  
 

1)  From the equation 2 and 3 above, find a function that gives Dst in terms of the transit time of 
the CME. Write the result in expanded form as a quadratic equation. 
 
 

2)  Assuming that Bz = BT / (2)1/2   use equations 1 and 4 to find a function that gives Dst  in 
terms of V.  
 
 
 
3)  From equations 2 and 4, find a function that gives Dst  in terms of BT.   
 



20 
Answer Key: 
 
 
 
 
 
 

       
(1)         Dst = -2.846  + 6.54 Bz  - 0.118Bz

2  - 0.002Bz
3 

 
(2)                               Dst = 0.00052 x (0.22 V + 340)2

 
(3)                                         T  =   -0.0042 x V  + 5.14 

 
(4)                                              BT =  0.047 V  + 0.644  

 
Problem 1:   From the equation 2 and 3:  Dst in terms of the transit time of the CME. 
 
      Eqn 3:   solve for V.   V =     (T - 5.14)/(-0.0042)  =    -238.1 T  +  1223.8    
      Eqn 2:  Substitute for V in terms of T:        
                                       Dst = 0.00052 x (0.22 ( -238.1 T + 1223.8) + 340)2 

                                              =  0.00052 x (  609.2  - 52.4 T )2

 

 In expanded form:   Dst  =   1.4 T2 - 33.2 T  + 193.0    in  nT units  
 
 

Problem 2:   Assuming that Bz = BT / (2)1/2   use equations 1 and 4 and find  Dst  in terms of V.  
 
Eqn 4:       Bz =   BT / (2)1/2   =  ( 0.047 V  + 0.644 )/(2)1/2 

                                                =   0.033 V  +  0.46 
 
Substituting into Eq 1: 
 
Dst  = -2.846 + 6.45 ( 0.033 V  +  0.46 ) - 0.118 (0.033 V  +  0.46 )2 - 0.002 (0.033 V  +  0.46 )3 

 
       =  ( -2.846 + 0.46*6.45 - 0.118*0.462 - 0.002* 0.463  ) + 
           ( 6.45*0.033  -0.118*2*0.46*0.033  -0.002*3.0* 0.462*0.033) V  + 
          ( -0.002*3.0*0.46*0.0332 ) V2  -0.002 * 0.0333 V3

 
    Dst   =   0.096 + 0.21 V  - 3.0 x 10-6 V2  -  7.2 x 10-8  V3

 
 
Problem 3:   From equations 2 and 4, find a function that gives Dst  in terms of BT.  
Eq 4: Solve for V   
                                V = (BBT - 0.644)/0.047   =   21.3 BT -  13.7  
 
Substitute into Eqn 1 :  Dst = 0.00052 x (0.22 (21.3 BT -  13.7 ) + 340)2

                                                 =  0.00052 ( 4.7 BBT  + 337)2

 

Expanded:               Dst =  0.011 BT
2  +  1.65 BT  +  59.1     in nT units 
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21 Monster Functions in Space Science  I 
Forget about the wimpy formulas you have played 
with before. Here is a reasonably complex formula 
that you will have to evaluate, and which will involve 
all the skills you have previously learned in 
algebra…and a mastery of scientific notation too! 
 
Be careful, but don't be shy! 
 
Keep track of your decimal points and exponents!! 
 
And, oh yes….Watch your back!!! 
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From 'An Analytic Solar Magnetic Field Model" by 
Banaszkiewicz, Axford and McKenzie (Astronomy 
and Astrophysics, vol. 337, p. 940-944. 

 

These formulas give the two components of the 
solar magnetic field, in units of Gauss,  where B 
= BBρ ρ + BzB  z where  ρ and z are the unit vectors 
along these two directions.  
 
Problem 1:  Evaluate to the nearest tenth (Bρ) 
and (Bz) for the following conditions appropriate 
to a distance from the sun equal to Earth's orbit 
using the following information:  
 
r2 = ρ2 + z2                                      K = 1.0 
 
M = 6.03 x 10+17  kilometers3         Q = 1.5 
 
α1 = 1.07 x 10+6    kilometers 
 
where       z = -3.48 x 107 kilometers  
                   ρ =  1.46 x 108 kilometers.    
 
 
 
Problem 2:  Find the magnitude of the 
magnetic field strength using the values of the 
two computed components from Problem 1. 
 
 



21 
Answer Key: 
 

 
 
 
 
 

For                 z = -3.48 x 107 kilometers                     ρ =  1.46 x 108 kilometers.   
Then              r  =   1.5 x 108 kilometers………this equals the Earth-Sun  orbital distance! 
 
 
                 3 (1.46 x 108)( -3.48 x 107)         15 (1.5)   (1.46 x 108)( -3.48 x 107)    (4 (-3.48 x 107)2 - 3 (1.46 x 108)2)           
Bρ/M =   --------------------------------   +   ----------  ----------------------------    ------------------------------------------    
                              (1.5 x 108)

5
                              8                      (1.5 x 108)

7 
                                         (1.5 x 108)

2 
                

                 
 
                         1.0                                               1.46 x 108

                + ------------    ----------------------------------------------------- 
                   1.07 x 10+6           [  (3.48 x 107+1.07 x 10+6 )

2 
+ (1.46 x 108)

2  
]
3/2

 

    BBρ         =    (6.03 x 10 ) (  - 2.0 x 10   +   2.3 x 10   +   4.0 x 10  )           =   2.4 x 10  Gauss +17 -25 -41 -23 -5

 
 
 
                   2(-3.48 x 107)

2 
- (1.46 x 108)

2
           3(1.5)     [ 8(-3.48 x 107)

4
 + 3(1.5 x 108)

4
 - 24(1.46 x 108)

2
 (-3.48 x 107)

2
]       

    Bz/M  =   ------------------------------------------   + -------   ------------------------------------------------------------------------------------------                         

                                        (1.5 x 108)
5 

                          8                                               (1.5 x 108)
9 

                                      
 
 
 
                                    1.0                                         (3.48 x 107   +  1.07 x 106) 
                       +   -----------------  ------------------------------------------------------------------------- 
                            (1.07 x 10+6 )         (    (3.48 x 107   +  1.07 x 106)

2 
+(1.46 x 108)

2   
)
3/2

 
 
 

      Bz      =     (6.03 x 10+17) (   -2.5 x 10
-25

  +  1.1 x 10
-41

   + 9.8 x 10
-24

  )    =     5.8 x 10-6  Gauss 
 
 
Problem 2:   Use the Pythagorean Theorem to find B.      B =   (  (2.4 x 10-8)2 + (5.8 x 10-6)2)1/2 = 2.5 x 10-5 Gauss.   
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22 Interpreting Maps of Magnetic Polarity 

 

 The above figure shows a map of the magnetic field directions near a sunspot 
(shaded area). (Courtesy: Christoph Keller, SOLIS Vector SpectroMagnetograph)  The 
image is about 10,000 kilometers across. 
 
Problem 1 - Circle those areas in which the magnetic field polarity is mostly Southwards. 
 
 
Problem 2 - Circle those areas in which the magnetic field polarity is mostly Northwards. 
 
 
Problem 3 - A simple bar magnet has exactly one South and one North pole. What can 
you conclude about the sources of sunspot magnetism in the above figure? 
 
 
Problem 4 - If you examine the magnetic field in the immediate vicinity of the sunspot, 
what can you conclude about the magnetic field of a sunspot? 
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22 Answer Key 

 Problem 1 - Circle those areas in which the magnetic field polarity is mostly Southwards. 
Answer: See figure below-left. Students should recall that the convention for representing 
magnetic polarity is that the arrows on field lines point into the surface for a South-type 
polarity. Students should look at the map and encircle all of the regions where the arrows are 
mostly pointing INTO the page. 
 
Problem 2 - Circle those areas in which the magnetic field polarity is mostly Northwards. 
Answer: See figure below-right. Students should look at the map and encircle all of the regions 
where the arrows are mostly pointing OUT of the page. 
 
 
Problem 3 - A simple bar magnet has exactly one South and one North pole. What can you 
conclude about the sources of sunspot magnetism in the above figure? 
Answer: Although the surface is magnetically complicated, there are about as many regions 
circled on the South polarity map as on the North polarity map, so the solar surface near a 
sunspot does resemble a number of 'bar magnet' regions combined together. 
 
 
Problem 4 - If you examine the magnetic field in the immediate vicinity of the sunspot, what 
can you conclude about the magnetic field of a sunspot? Answer: Students should be able to 
tell that the strongest magnetic field (longest arrows) are found directly near the sunspot 
region, and that there is a distinct separation between the North and South polarity field 
components.  
 
Note: For more about Vector SpectroMagnetograms visit the SOLIS website at 
http://solis.nso.edu for additional information and an archive of published research papers.  
These often include images such as the one used in this math problem. 
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23 Interpreting Maps of Magnetic Intensity 

 

 The map above shows the intensity of Earth's magnetic field in 1990 in units of 
nanoTeslas (nT). It is called an isodynamic map, and the contour interval is 2,500 nT.  
The intensity at each point, B,  is computed from the individual magnetic field 
components (Bx, By, Bz) by using the Pythagorean Theorem. 
 
Problem 1 - In which geographic regions is the surface field: A) The weakest?  B) The 
strongest? 
 
 A gradient is a measure of how rapidly a quantity changes its value across a span 
of distance. A 'steep' gradient, such as 1000 nT/kilometer, indicates a very rapid change 
in the quantity across a distance, while a 'shallow' gradient such as 5 nT/kilometer 
indicates a very slow change of the quantity with distance.  A gradient is computed like a 
slope by using the formula G = (y2 - y1)/(x2 - x1).  
 
Problem 2 - Calculate the following magnetic gradients for the indicated pairs of points;  
A)  Panama City to Mexico City:  P1 = (35,000 nT, 0.0)   P2 = (42,500 nT, 1,200 km)   
B) Buenos Aires to Rio de Jeniero: P1 = (30,000 nT, 0.0)   P2 = (23,000 nT, 2,200 km) 
 
Problem 3 - A geologist makes a series of 6 magnetic intensity measurements equally 
spaced along two different tracks. Each track is 1 kilometers in length. A) What is the 
average magnetic intensity for each path? B) What are the largest and smallest 
magnitudes for gradients (nT/meter) detected along each path, and C) Which track 
suggests something interesting that is probably worthy of further investigation? (Units are 
in nT) 
 
Path 1)       50,000       50,100      49,900      50,300      50,500      50,800 
Path 2)       49,800       49,500      50,200      51,300      49,800      49,500 
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Answer Key 23 
  

Problem 1 - In which geographic regions is the surface field:  
A) The weakest?   Answer: The contour levels over Brazil are near 25,000 nT. This is called 
the South Atlantic Anomaly because this is where the van Allen Belts are slightly closer to 
Earth's surface and are responsible for radiation effects when astronauts in orbit and 
commercial jet flights pass through this region. 
B) The strongest? Answer: Near the magnetic poles where the contours are near 60,000 nT ( 
North Magnetic Pole) and 65,000 nT near the South Magnetic Pole. 
 
Problem 2 - Calculate the following magnetic gradients for the indicated pairs of points;  
A)  Panama City to Mexico City:  P1 = (35,000 nT, 0.0)   P2 = (42,500 nT, 1,200 km)   
B) Buenos Aires to Rio de Jeniero: P1 = (30,000 nT, 0.0)   P2 = (23,000 nT, 2,200 km) 
 
Answer: A)    G =  (42,500 - 35,000)/(1,200 - 0.0) = + 6.25 nT/kilometer. This means as you 
travel northward  in the northern hemisphere, the magnetic field increases in strength as your 
latitude increases. This is because you are approaching the North magnetic Pole. 
 
Answer B)  G = (23,000 - 30,000)/(2,200 - 0.0) =  -3.2 nT/kilometer. This means that as you 
are traveling northward in the southern hemisphere, the magnetic field is decreasing in 
strength as you are moving away from the South Magnetic Pole. 
 
Problem 3 - A geologist makes a series of 6 magnetic intensity measurements equally spaced 
along two different tracks. Each track is 1 kilometers in length. A) What is the average 
magnetic intensity for each path? B) What are the largest and smallest magnitudes for 
gradients (nT/meter) detected along each path, and C) Which track suggests something 
interesting that is probably worthy of further investigation? (Units are in nT) 
 
Path 1)       50,000       50,100      49,900      50,300      50,500      50,800 
Path 2)       49,800       49,500      50,200      51,300      49,800      49,500 
 
Answer:  See the calculations in the following Table: 
 

Position Track 1 Track 2 Gradient 1 Gradient 2 
(meters) (nT) (nT) (nT/m) (nT/m) 

     
0 50000 49800   

200 50100 49500 0.5 -1.5 
400 49900 50200 -1.0 3.5 
600 50300 51300 2.0 5.5 
800 50500 49800 1.0 -7.5 

1000 50800 49500 1.5 -1.5 
 
A) Average for Track 1 = 50,267 nT   Track 2 =  50,016 nT 
B) Track 1:  smallest = 0.5   largest =  2.0       Track 2:   smallest =  1.5  largest = 7.5 
C) Track 2 has the largest gradient change between +5.5 and -7.5 in only 200 meters.  
Note that although Track 1 has the highest average intensity, Track 2 has the largest changes 
in gradient which suggests that something is changing the overall magnetic field locally. 
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24Magnetic Force in Three Dimensions 

  A magnetic field is more complicated in shape than a gravitational field 
because magnetic fields have a property called ‘polarity’. All magnets have a 
North and South magnetic pole. Depending on where you are in the space near 
a magnet, the force you feel will be different. The strength of the magnetic field 
along each of the three directions can be thought of in terms of the axis of a 
Cartesian coordinate system x, y and z so that, for example, Bx is its strength 
along the x-axis. The three magnitudes for the magnetic strength are given by 
the formulas in the box below.

x, y and z represent the coordinates of a 
point in space in multiples of the radius of 
Earth where 1.0 Re = 6,378 km. For 
example, ‘x = 2.4’ means a physical distance 
of 2.4 x 6378 km = 15,307 kilometers. Any 
point in space near Earth can be described 
by its address (x, y, z).  
 
r is the distance from (x,y,z) to the center of 
Earth found by using the Pythagorean 
Theorem:  
             r = (Bx2 + By2 + Bz2)1/2

 
M is a constant equal to 31,000 nT Re3. 
 
Bx, By and Bz  computed from these 
formulae will be in units of nanoTeslas (nT). 

Problem  1 -  Evaluate these three equations at the orbit of communications 
satellites for the case where x = 7.0, y = 0.0, z = 0.0 and r = 7.0 
 
 
 
Problem  2 -  Evaluate these three equations in the Van Allen Belts for the case 
where x = 0.38, y = 0.19, z = 1.73 and r = 3.0 
 
 
 
Problem  3 -  Evaluate these three equations near the Moon for the case where x 
=  0.0, y = 48.0, z = 36 and r = 60.0 
 
 
 
Problem 4 - Use the Pythagorean Theorem in 3-dimensions to determine the total 
strength of Earth's magnetic field for problems 1, 2 and 3. 
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24Answer Key                                   
 

Problem  1 -  For x = 7.0, y = 0.0, z = 0.0 and r = 7.0 
 

  Bx = 3 (7.0) (0.0) (31,000)/(7.0)5 = 0.0  nT 
 
  By = 3 (0.0) (0.0) (31,000) / (7.0)5  =  0.0  nT 
 
  Bz = [3(0.0)2 – (7.0)2](31,000) / (7.0)5

           =  -  (31,000)(7.0)2/(7.0)5  
                          = -  1,519,000 / 16807   
                          =  - 90 nT 
 
Problem  2 -  For x = 0.38, y = 0.19, z = 1.73 and r = 3.0 
  Bx = 3 (0.38) (1.73) (31,000)/(3.0)5 = +251  nT 
 
  By = 3 (0.19) (1.73) (31,000) / (3.0)5  =  +126  nT 
 
  Bz = [3(1.73)2 – (3.0)2) (31,000)/ (3.0)5                            
                          = (-0.021)(31000)/243  
                          =  - 2.7 nT 
 
Problem  3 -  For  x =  0.0, y = 48.0, z = 36 and r = 60.0 
  Bx = 3 (0.0) (36) (31,000)/(60)5 = 0.0  nT 
 
  By = 3 (48.0) (36) (31,000) / (60)5  =  0.21  nT 
 
  Bz = [3(36)2 – (60)2] (31,000) / (60)5  
           =  (288)(31,000)/(7,776,000,000)  
                          =  0.0011 nT 
 
 
Problem 4 - Use the Pythagorean Theorem in 3-dimensions to determine the total 
strength of Earth's magnetic field for problems 1, 2 and 3.  
 
1)  B = ( Bx2 + By2 + Bz2)1/2 =  ( (-90)2)1/2 = 90 nT at communications satellite orbit. 
 
2) B = ( (251)2 +(126)2  +(-2.7)2  )1/2 = 281 nT at Van Allen belts 
 
3)  B = ( (0.0)2 +(0.21)2  +(0.0011)2  )1/2 = 90 nT at the Moon 
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25   Hinode Studies Loopy Sunspots! 

 
 
 

 The solar surface is not only a hot, convecting ocean of gas, but is laced with 
magnetism. The sun's magnetic field can be concentrated into sunspots and complex 'loopy' 
patterns that the magnetic fields make.   The above image was taken by NASA's TRACE 
satellite and shows one of these magnetic loops rising above the surface near two sunspots. 
The horseshoe shape of the magnetic field is anchored at its two 'feet' in the dark sunspot 
regions. The heated gases become trapped by the magnetic forces in sunspot loops, which 
act like magnetic bottles. The gases are free to flow along the lines of magnetic force, but not 
across them. The above image only tells scientists where the gases are, and the shape of 
the magnetic field, which isn't enough information for scientists to fully understand the 
physical conditions within these magnetic loops. Satellites such as Hinode carry instruments 
like the EUV Imaging Spectrometer, which lets scientists measure the temperatures of the 
gases and their densities as well. 
 
Problem 1 -  The Hinode satellite studied a coronal loop on January 20, 2007 associated 
with Active Region AR 10938, which was shaped like a semi-circle with a radius of 20,000 
kilometers, forming a cylindrical tube with a base radius of 1000 kilometers. What was the 
total volume of this magnetic loop in cubic centimeters assuming that it is shaped like a 
cylinder? 
  
Problem 2 -  The Hinode EUV Imaging Spectrometer was able to determine that the density 
of the gas within this magnetic loop was about 2 billion hydrogen atoms per cubic centimeter. 
If a hydrogen atom has a mass of 1.6 x 10-24 grams, A) what was the total mass of the gas 
trapped within this cylindrical loop in metric tons? B) An oil tanker carrying 700,000 barrels of 
oil has a mass of  about 100,000 tons. How many tankers equal the mass of one coronal 
loop? 
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Answer Key: 
 
 
 
 
 
 

  
Problem 1:  The Hinode satellite studied a coronal loop on January 20, 2007 associated 
with Active Region AR 10938, which was shaped like a semi-circle with a radius of 20,000 
kilometers, forming a cylindrical tube with a base radius of 1000 kilometers. What was the 
total volume of this magnetic loop in cubic centimeters assuming that it is shaped like a 
cylinder? 
 
  Answer:    The length (h) of the cylinder is  1/2 the circumference of the circle with a 
radius of 20,000 km or  h = 1/2 (2π R) = 3.14 x 20,000 km =  62,800 km 
 
 The volume of a cylinder is   V = π R2 h   so that the volume of the loop is   
         V =   π (1000 km)2 x  62,800 km 
  =   2.0 x 1011 cubic kilometers. 
1 cubic kilometer = 10

15
 cubic centimeters so 

                       = 2.0 x 1026 cubic centimeters 
  
 
 
 
Problem 2:  The Hinode EUV Imaging Spectrometer was able to determine that the 
density of the gas within this magnetic loop was about 2 billion hydrogen atoms per cubic 
centimeter. If a hydrogen atom has a mass of 1.6 x 10-24 grams, A) what was the total mass 
of the gas trapped within this cylindrical loop in metric tons? B) An oil tanker carrying 
700,000 barrels of oil has a mass of  about 100,000 tons. How many tankers equal the mass 
of one coronal loop? 
 
 
 
Answer:   A) The total mass is the product of the density times the volume, so 
 
Density = 2 x 109 particles/cc  x (1.6 x 10-24 grams/particle)  =  3.2 x 10-15 grams/cm3

 
The approximate volume of the magnetic loop  in cubic centimeters is   
                       V =  ( 2.0  x 1011  km3 ) x (1.0 x 1015 cm3/km3

                           =  2.0 x 1026 cm3               
 
Mass  =   Density x Volume =   (3.2 x 10-15 grams/cm3) x (2.0 x 1026 cm3  ) =   6.4 x 10 26-15  
=  6.4 x 1011  grams  or  6.4 x 108  kilograms  or  640,000 metric tons.   
 
 
B)   Loop = 640,000 tons/100,000 tons =  6.4 oil tankers. 
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26 Magnetic Pressure - I 

 Toy magnets provide an excellent introduction 
to a very 'tactile' property of magnetic fields. When 
you try to push like poles together, you can feel an 
invisible pressure pushing back at your effort. Weak 
magnets can be easily overcome so that you can 
actually get the poles to physically touch. For very 
strong magnetic fields, this is humanly impossible.  
 The amount of pressure, in dynes per square 
centimeter, can be easily calculated from the 
strength of the field according to the formula on the 
right.  

 For example, at a particular location in space, the magnetic field 
components of a toy bar magnet are given by B = (Bx, By, Bz) and are measured to 
have the values, in Gauss units, of (+25, +15, +38). The total strength of the 
magnetic field at that location, using the Pythagorean Theorem,  is  B = (252 + 152 
+ 382)1/2 =  48 Gauss. Then Pm = (48)2 / (8x3.141) =  92 dynes/cm2 . If we forced 
two magnets together with this same field strength and polarity, they will produce a 
total pressure of twice this amount or 184 dynes/cm2. 
 
Problem 1 - Earth's magnetic field at the surface has a strength of 0.7 Gauss. 
What is the magnetic pressure in A) dynes/cm2    B) Newtons/m2   C) Pounds/inch2  
D) microPascals?  (Note:  1 Tesla = 10,000 Gauss; 1 Newton = 107 dynes; 1 
Pound = 4.45 Newtons; 1 Pascal = 1 Newton/ m2). 
 
 
Problem 2 - A sunspot magnetic field has an average strength of 4,000 Gauss. 
What is the magnetic pressure in Pascals? 
 
 
Problem 3 - Two magnetic fields are in close contact. The left-hand field has an 
average field of BL = (+3.5, -2.2, +15.0) while the right-hand field has a strength of 
BR=(-1.0, +5.2, -13.4). If the units for the fields are in Gauss, which field has the 
largest pressure in Pascals?  
 
 
Problem 4 - A  50 kg man hangs on a rope attached to a metal plate that is 0.25 
meters square, and exerts a pressure of   1,960 Pascals. What must be the 
strength of the magnetic field to support this load;  A) In Gauss?  B) In Teslas? 
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P   is the magnetic pressure 
B   is the magnetic field   

strength in Gauss 



Answer Key 26 
 Problem 1 - Earth's magnetic field at the surface has a strength of 0.7 Gauss. What is 

the magnetic pressure in A) dynes/cm2    B) Newtons/m2   C) Pounds/inch2  D) 
microPascals?  (Note:  1 Tesla = 10,000 Gauss; 1 Newton = 105 dynes; 1 Pound = 
4.45 Newtons; 1 Pascal = 1 Newton/ m2). 
A) Pm = (0.7)2/(8 x 3.14) = 0.02 dynes/cm2.   
B) Pm = 0.02 dynes/cm2 x (1 Newton/100000 dynes) x (10000 cm2/1 m2) = 0.002 
Newton/m2. 
C) Pm = 0.002 Newton/m2 x (1 Pound/4.45 Newtons) x (1 meter/39.37 inches) x (1 
meter/39.37 inches) = 0.00000029 pounds/inch2

D)  Pm = 0.002 Newton/m2 x ( 1,000,000 / 1) = 2000 microPascals. 
 
Note: At sea-level 1 Atmosphere = 14 pounds/inch2 so magnetic pressure is 
irrelevant. 
 
Problem 2 - A sunspot magnetic field has an average strength of 4,000 Gauss. What 
is the magnetic pressure in Pascals? 
Answer:  Pm = (4,000)2/(8 x 3.141) =  640,000 dynes/cm2.   
640000 dynes/cm2 x (1 Newton/105 dynes) x (10000 cm2/1m2) =  64000 Newtons/m2 
and since 1 Newton/m2 = 1 Pascal, we have   64,000 Pascals.  
 
 
Problem 3 - Two magnetic fields are in close contact. The left-hand field has an 
average field of BL = (+3.5, -2.2, +15.0) while the right-hand field has a strength of 
BR=(-1.0, +5.2, -13.4). If the units for the fields are in Gauss, which field has the 
largest pressure in Pascals?  Answer: BL = (3.52 + 2.22 + 152)1/2 =  15.5  Gauss. BR 
= (12 + 5.22 + 13.42)1/2 =  14.4 Gauss.  Because BL > BR, the BL field produces the 
most pressure.  Pm = (15.5)2/(8x3.141) =  9.6  dynes/cm2.  Then  9.6 x (1 
Newton/100000dynes) x (10000 cm2/1m2) = 0.96 Newtons/m2 = 0.96 Pascals. 
 
 
Problem 4 - A  50 kg man hangs on a rope attached to a metal plate that is 0.25 
meters square, and exerts a pressure of   1,960 Pascals. What must be the strength of 
the magnetic field to support this load;  A) In Gauss?  B) In Teslas? 
 
Answer:   First convert 1,960 Pascals to dynes/cm2 to get   the pressure units used in 
the equation. Then Pm =  1960 Pascal x (100000 dynes/Newton) x (1 m2/10000cm2) =  
19,600 dynes/cm2.   Solving the equation for B to get B = (8 π P)1/2   we obtain B = (8 
π 19600)1/2 =   A) 702 Gauss.  and B) 702 Gauss x (1 Tesla/10000 Gauss) = 0.0702 
Teslas. 
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27 Magnetic Pressure - II 

 Magnetic pressure, described by the top 
equation on the right, can interact with gases that 
consist of charged particles (called plasmas). 
Plasmas are very common in Nature, and behave 
like gases. They produce pressure through the 
collision of individual atoms and ions in the plasma 
with the atoms or ions in other materials.   
 
 A simple equation for gas pressure is 
provided to the lower right. Because we are dealing 
with plasmas that can feel the effects of magnetic 
fields, we can compare the gas pressure of  plasma 
with the pressure produced by a magnetic field 
acting upon it to investigate some basic phenomena 
in Nature. 

 
 
P   is the magnetic pressure 
B   is the magnetic field   

strength in Gauss 

3Pg = NkT  
2

N  gas density in particles/ m2

T   is the temperature in K 
k   Boltzman's Constant 
      =1.38 x 10-23 m2 kg s-2 K-1  

 For example, suppose we have a magnetic field in a particular region of space 
that produces a magnetic pressure of Pm = 10 Newtons/m2. If the density of the 
plasma is 1020 particles/m3, at what temperature will the magnetic field and plasma 
be in pressure equilibrium so that Pm = Pg?   We see that since  
                Pm = Pg,  
                  10 = 1.5 x (1.0x1020 ) x (1.38 x 10-23) T         and so  we get  
 
                   T =  10/(1.5 x (1.0x1020 ) x (1.38 x 10-23))  
                      = 4,800o Kelvin. 
 
Problem 1 -  The tensile strength of steel is 750 million Pascals. What is the 
strongest magnetic field (in Teslas) that can be stored in a steel magnet before the 
steel explodes? 
 
 
Problem 2 -  The solar surface has a density of    2.0 x 1023  particles/m3 and a 
temperature of 6,000 K. What strength of magnetic field, in Gauss, would be in 
equilibrium with the plasma under these conditions? 
 
 
Problem 3 -   At the time the solar system formed, the proto-planetary accretion disk 
had a density of  2.0 x 1020 particles/m3 and a temperature of 2,000 K just inside the 
orbit of Mercury. What is the strongest magnetic field that can be in pressure 
equilibrium with the gas in this disk? 
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 Problem 1 -  The tensile strength of steel is 750 million Pascals. What is the strongest 

magnetic field (in Teslas) that can be stored in a steel magnet before the steel 
explodes?  
Answer:   Pm = 750 million Pascals which is  7.5 x 108 x (10 dynes/cm2) / (1 Pascal) =  
7.5 x 109 dynes/cm2 = B2/8π  so B = (8 π 7.5 x 109)1/2 =  430,000 Gauss.  Since 
10,000 Gauss = 1 Tesla, we have the desired answer of  43 Teslas. 
 
 
 
 
Problem 2 -  The solar surface has a density of 2.0 x 1017  particles/m3 and a 
temperature of 6,000 K. What strength of magnetic field, in Gauss, would be in 
equilibrium with the plasma under these conditions? 
 
Answer:  The plasma pressure is   
                             Pg = 1.5 x (2.0 x 1017) x (1.38 x 10-23) x 6,000 
                             Pg =  0.025 Pascals. 
Since 10 dyne/cm2 = 1 Pascal,    we have   Pg =  0.25 dyne/cm2. 
 Then from Pm = B2/(8 π) = 0.25    we solve for B and get    B =  2.5 Gauss. 
Note: This is typical of the average solar surface field deduced from other data. 
 
 
 
Problem 3 -   At the time the solar system formed, the proto-planetary accretion disk 
had a density of  2.0 x 1020 particles/m3 and a temperature of 2,000 K just inside the 
orbit of Mercury. What is the strongest magnetic field that can be in pressure 
equilibrium with the gas in this disk? 
Answer: We have N = 2.0 x 1020 particles/m3  
                              T = 2,000 K 
              So Pg = 1.5 (2.0 x 1020) x (1.38 x 10-23) x 2000 
                    Pg = 8.3 Pascals 
Since 10 dyne/cm2 = 1 Pascal,    we have   Pg =  83  dyne/cm2. 
Then from Pm = B2/(8 π) = 83    we solve for B and get    B =  46 Gauss. 
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28           Magnetic Pressure - III 

 Magnetic field pressure, and gas 
pressure, can combine in many different 
ways in a plasma. Because plasmas are 
electrically-charged, magnetic fields can 
be generated by them through current 
flows, or can be dragged around by 
plasmas whose charged particles 
become 'anchored' to the field. 
 The total pressure of a plasma is 
a combination of magnetic and gas 
pressure. This allows two different 
plasmas to be in pressure balance, but 
with very different physical properties. 
The figure to the right shows such a 
situation. Examples of such systems 
include sunspots, and Earth's complex 
magnetic field environment. 

3 3B2
NkTa  + = NkT2 8π 2  b

 
N is the gas density (particles/cm3) in 
each region, B is the magnetic field 
strength (Gauss) in the left-hand region, 
and Ta and Tb are the gas temperatures 
in the left and right-hand regions. 

Problem 1 - Suppose we have a 10,000 Gauss magnetic field embedded in a 
plasma with room temperature and density (Ta=300 K and N = 3.0 x 1021 
particles/cm3). It is in contact with a second plasma with the same density. What 
will be its temperature (Tb) so that the pressures are balanced between the two 
regions? (Note: Boltzmann's Constant: k = 1.38 x 10-16 ergs/ degree K) 
 
 
 
 
Problem 2 - Early models of sunspots proposed that they were in pressure 
balance between the inner region containing a strong magnetic field, and the 
surrounding solar surface, which contained a weak magnetic field. If the 
properties of the plasma inside the sunspot are given by, B = 5000 Gauss, N = 
3.0 x 1018 ions/cm3, and the region outside the sunspot has T = 5770 K and N = 
3.0 x 1018 ions/cm3, what would be the minimum temperature of the plasma inside 
the sunspot in order to allow pressure balance? 
 
 
 
Problem 3 - An interstellar cloud is observed to be in pressure balance with its 
surroundings. The outside gas temperature and density are T = 100,000 K   N = 
1.0 atoms/cm3, and the cloud's temperature and density are T = 50 K, N= 2,000 
atoms/cm3. An astronomer measures a magnetic field of B = 0.001 Gauss inside 
the cloud. Is this cloud in pressure equilibrium? 
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Answer Key 28 
  

Problem 1 - Suppose we have a 10,000 Gauss magnetic field embedded in a plasma with 
room temperature and density (Ta=300 K and N = 3.0 x 1021 particles/cm3). It is in contact 
with a second plasma with the same density. What will be its temperature (Tb) so that the 
pressures are balanced between the two regions?  
(Note: Boltzmann's Constant, k = 1.38 x 10-16) 
 
Answer;   For the left-hand region:    
               Pm = B2/8π =  (10,000)2/(8 x 3.141) = 3.9 x 106 dynes/cm2

               Pg = 1.5 x (3.0 x 1021 ) x (1.38 x 10-16) x (300) = 1.86 x 108 dynes/cm2 

So           P(total) = Pm + Pg =  1.9 x 108 dynes/cm2 

So balancing the left and right-hand pressures we get 
                        1.9 x 108 dynes/cm2   =   1.5 x (3.0 x 1021 ) x (1.38 x 10-16) x T   
And solving for T we get T =   306 K.  

 
Problem 2 - Early models of sunspots proposed that they were in pressure balance between 
the inner region containing a strong magnetic field, and the surrounding solar surface, which 
contained a weak magnetic field. If the properties of the plasma inside the sunspot are given 
by, B = 5000 Gauss, N = 3.0 x 1018 ions/cm3, and the region outside the sunspot has T = 5770 
K and N = 3.0 x 1018 ions/cm3, what would be the minimum temperature of the plasma inside 
the sunspot in order to allow pressure balance? 
Answer;   For the left-hand region inside the sunspot has:    
               Pm = B2/8π =  (5,000)2/(8 x 3.141) = 9.95 x 105 dynes/cm2

               Pg = 1.5 x (3.0 x 1018 ) x (1.38 x 10-16) x (T) = 621 T dynes/cm2 

So           P(total) = Pm + Pg =   (9.95 x 105 +  621 T ) dynes/cm2 

 
The outside region has 
     Pg = 1.5 x (3.0 x 1018 ) x (1.38 x 10-16) x (5770) = 3.58 x 106 dynes/cm2 

 
So balancing the left and right-hand pressures we get 
                        (9.95 x 105 +  621 T ) = 3.58 x 106   
And solving for T we get T =   4,160 K.  
Note: This simple pressure-balance predicts that the cooler plasma inside the sunspot would 
emit less light at the lower temperature, and so appear darker than the surrounding solar 
surface. 
 
Problem 3 - An interstellar cloud is observed to be in pressure balance with its surroundings. 
The outside gas temperature and density are T = 100,000 K   N = 1.0 atoms/cm3, and the 
cloud's temperature and density are T = 50 K, N= 2,000 atoms/cm3. An astronomer measures 
a magnetic field of B = 0.001 Gauss inside the cloud. Is this cloud in pressure equilibrium? 
Answer; Inside pressure pushing outwards  is   
                          Pg + Pm =    2.1 x 10-11 + 4.0 x 10-8 =  4.0 x 10-8 dynes/cm3.  
The outside pressure pushing inwards is   Pg = 2.1 x 10-11 dynes/cm3, so the inside pressure 
of the cloud is nearly 1000 times higher and the cloud is not in pressure balance.  Note: In a 
real interstellar cloud, the gravity of the cloud's mass is an additional internal 'pressure' that 
helps support the cloud and balance the outward thermal and magnetic pressures. 
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29 Magnetic Pressure - IV 

 Gravity is an important force in most 
astronomical systems, and often plays an 
important role in how magnetic fields and 
plasmas will behave. An important crucible for 
observing these interactions is the solar 
surface.  
 Hot plasmas with entangled magnetic 
fields produce many spectacular phenomena 
including breath-taking solar prominences like 
the one in the image on the right taken on   
September 14, 1999 by the SOHO satellite. 
Although most prominences are immediately 
hurled out into space as eruptive 
prominences, another category called 
quiescent prominences seem to linger 
motionless for days at a time. 
 In this problem, we will explore how 
quiescent prominences may manage this 
delicate balancing act! 

Problem 1 - If the prominence has a density of 5.6 x 10-13 grams/cm3 and is  70,000 
kilometers in diameter, how many grams of prominence gas are present in each  
square-centimeter of area? 
 
Problem 2 - At the top of the arch of a quiescent prominence, the force of the sun's 
gravity is about 275 Newtons per kilogram of matter being suspended. From your 
answer to Problem 1, what is the gravitational force in dynes, for each gram of 
prominence material? (Note: 1 Newton = 100,000 dynes) 
 
Problem 3 -  The magnetic field in the prominence has a strength of B = 50 gauss. 
What is the magnetic pressure of the prominence in dynes/cm2? (Pm = B2/8π ) 
 
Problem 4 - The plasma has a density of 3.5 x 10-11 atoms/cm3 and suppose that 
observations suggest that it is at a temperature of 100,000 K because the gas is 
emitting x-rays. What is its gas pressure in dynes/cm2? (Note: Pg = 3/2 N k T where k 
= 1.38 x 10-16 erg/deg Kelvin) 
 
Problem 5 - Compare the total pressure of the prominence material (Pm + Pg) with 
the gravitational pressure. Are they in pressure balance? 
 
Problem 6 - What  happens to your answer to Problem 5 if you change any of the 
parameters slightly? 
 
Problem 7 - Explain how a quiescent prominence might suddenly be transformed into 
an eruptive prominence? 
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 Problem 1 - If the prominence has a density of 5.6 x 10-13 grams/cm3 and is  70,000 

kilometers in diameter, how many grams of prominence gas are present in each  
square-centimeter of area?  Answer:  D = 5.6 x 10-13 grams/cm3  x 70,000 km x 
(100000 cm/1 km) =  0.0039 grams/cm2

 
Problem 2 - At the top of the arch of a quiescent prominence, the force of the sun's 
gravity is about 275 Newtons per kilogram of matter being suspended. From your 
answer to Problem 1, what is the gravitational force in dynes, for each gram of 
prominence material? (1 Newton = 100,000 dynes)   Answer:   You need to convert  
275 Newton/kg to dynes/cm.   Fg = 275 x (100000 dynes/Newton) x (1 kg/1000 grams) 
= 27500 dynes per gram. Since the mass is 0.0039 grams for each square-centimeter, 
the gravitational force  Fg=27500x0.0039 = 107 dynes for each cm2

 
Problem 3 -  The magnetic field in the prominence has a strength of B = 50 gauss. 
What is the magnetic pressure of the prominence in dynes/cm2 ? (Pm = B2/8π ) 
Answer: B = B2/(8 π) = (50)2/(8 x 3.141) =  99.5 dynes/cm2

 
Problem 4 - The plasma has a density of 3.5 x 10-11 atoms/cm3 and suppose that 
observations suggest that it is at a temperature of 100,000 K because the gas is 
emitting x-rays. What is its gas pressure in dynes/cm2? (Note: Pg = 3/2 N k T where k 
= 1.38 x 10-16)    Answer:  Pg = 1.5 x (3.5 x 1011 ) x 1.38 x 10-16 x (100,000) =  7.2 
dynes/cm2. 
 
Problem 5 - Compare the total pressure of the prominence material (gas pressure plus 
magnetic pressure) with the gravitational pressure. Are they in pressure balance? 
Answer;   Pgravity =  107 dynes/cm2 while for the prominence, Pg + Pb  = 7.2 + 99.5 = 
107 dynes/cm2.  The pressures are equal, so the system is in pressure balance. This 
means, mechanically, that the prominence is balanced against gravity through the 
tension in its magnetic field acting upon the charged plasma.  
 
Problem 6 - What  happens to your answer to Problem 5 if you change any of the 
parameters slightly? Answer; Changing the gas density or magnetic field strength by 
as little as 1% will change the pressures acting on the prominence and make them 
unequal. This means that the pressure-balance equilibrium is unstable and may be 
easily lost as the system changes, the magnetic field weakens, or the plasma cools. 
 
Problem 7 - Explain how a quiescent prominence might suddenly be transformed into 
an eruptive prominence? Answer: The solar surface is constantly changing, and if the 
magnetic field, gas density, or gas temperature in the prominence were to change 
even slightly, the prominence would no longer be stable and would start to move and 
'erupt'. 
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30 Magnetic Pressure and Ram Pressure 

 A common situation is to have 
one cloud of plasma run into another 
cloud, or into a magnetic field system. 
The collective action of the plasma 
mass traveling at a given speed is to 
produce a collision pressure known as 
ram pressure.   
 Mathematically, it is a simple 
product of the density of the gas and its 
velocity-squared. For example, if the 
density of the cloud is given in 
grams/cm3 and the velocity is 
expressed in centimeters/sec, the 
pressure will be in units of dynes/cm2.  
 
   Pram  = ρ V2

 

 There are many examples of ram pressure in action. For instance, the photo 
shows the curved, parabola-shaped, 'bow shock' produced just ahead of the young 
star LL Orionis (Courtesy NASA; Hubble Space Telescope) as its emitted gas plows 
through a dense cloud of gas through which the star is traveling. Other examples of 
ram pressure effects include Earth's magnetosphere and its interaction with the solar 
wind, or the sun's heliopause beyond the orbit of Pluto, where the solar wind 
interacts with the interstellar medium. 
 
Problem 1 - The solar wind has a density of 100 atoms/cm3 and a speed of 450 
km/sec. if the mass of the average atom (hydrogen) is 1.6 x 10-24 grams, what is the 
ram pressure provided by the solar wind? 
 
 
 
Problem 2 - The magnetic field pressure within a sunspot is  6,300 dynes/cm2. If the 
density of the solar gas is  2 x 1015 atoms/cm3 and each atom has a mass of  
m = 1.6 x 10-24 grams, what is the minimum speed of the gas, V in km/s, that will 
keep the sunspot magnetic field confined? 
 
 
 
 

Space Math                                http://spacemath.gsfc.nasa.gov 
 



30 Answer Key 

  
Problem 1 - The solar wind has a density of 100 atoms/cm3 and a speed of 450 
km/sec. if the mass of the average atom (hydrogen) is 1.6 x 10-24 grams, what is the 
ram pressure provided by the solar wind?  Answer:  First calculate the gas density:    
ρ =   100 atoms/cm3 x 1.6 x 10-24 gm/atom =  1.6 x 10-22 grams/cm3.   Next convert 
km/sec to cm/sec:      450 km/sec x 100000 cm/km = 4.5 x 107 cm/sec. 
Then Pram = (1.6 x 10-22 ) x (4.5 x 107 )2 =  3.2 x 10-7   dynes/cm2

 
 
 
Problem 2 - The magnetic field pressure within a sunspot is  6,300 dynes/cm2. If the 
density of the solar gas is  2 x 1015 atoms/cm3 and each atom has a mass of  
m=1.6 x 10-24 grams, what is the minimum speed of the gas, V in km/s, that will keep 
the sunspot magnetic field confined? 
Answer;  First convert the number density into grams/cm3   to get  
r =  2 x 1015 atoms/cm3  x  1.6 x 10-24 grams/atom = 3.2 x 10-9 greams/cm3. 
 
We need   6,300  dynes/cm2  =   ρ V2  and solving for V we get   
V = (6300/3.2 x 10-9 )1/2 =   1,400,000 cm/sec or 14 kilometers/sec. 
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31 An Application of Magnetic Pressure and Ram Pressure 
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When the solar wind flows past 
Earth, it pushes on Earth’s 
magnetic field and compresses it. 
There is a region in space called 
the magnetopause where the 
pressure of the solar wind 
balances the outward pressure of 
Earth’s magnetic field. The 
distance from the Earth, R, (white 
arrow in drawing) where these 
two pressures are balanced is 
given by the equation: 

In this equation, D is the density in grams per cubic centimeter 
(cc) of the gas (solar wind, etc) that collides with Earth’s 
magnetic field, and V is the speed of this gas in  centimeters per 
second.  Let’s do an example to see how this equation works! 

    Step 1 - The solar wind has a typical speed of 450 km/s or equivalently V = 4.5 x 107 cm/s. 
To find the density of the solar wind in grams/cc we have to do a two-step calculation. The wind 
usually has a particle density of about 5 particles/cc, and since these particles are typically 
protons (each with a mass of 1.6 x 10-24 gm) the density is then 5 x (1.6 x 10-24 gm)/cc so that D 
=  1.28 x 10-23 gm/cc.  Next we use a calculator! 
    Step 2 - We substitute D and V into the equation and get  R6 = 1105242. so that  R = 
(1105242.6)1/6. To solve this, we use the  calculator with a key labeled    Yx  First type 
‘1105242.6’ and hit the ‘Enter’ key. Then type  ‘0.1666’ (which equals 1/6) and press the YX 
key.  In this case the answer will be ’10.16’ and it represents the value of R in multiples of the 
radius of Earth (6378 kilometers).  Scientists simplify the mathematical calculation by using the 
radius of Earth as their unit of distance, but if you want to convert 10.16 Earth radii to 
kilometers, just multiply it by  ‘6378 km’ which is the radius of Earth  to get  64,800 kilometers. 
That is the distance from the center of Earth to the magnetopause where the magnetic pressure 
is equal to the solar wind pressure for the selected speed and density. Now let's apply this 
example to finding the magnetopause distance for some of the storms that have encountered 
Earth between 2000 and 2003 years.  
 
Problem 1 -    Complete the table below, rounding the answer to three significant figures: 

Storm Date Day 
Of Year 

Density 
(particle/cc) 

Speed 
(km/s) 

R  
(km) 

1 11/20/2003 324 49.1 630  
2 10/29/2003 302 10.6 2125  
3 11/06/2001 310 15.5 670  
4 3/31/2001 90 70.6 783  
5 7/15/2000 197 4.5 958  

Problem 2 -  The fastest speed for a solar storm ‘cloud’ is 1500 km/s. What must the density 
be in order that the magnetopause is pushed into the orbits of the geosynchronous 
communication satellites at 6.6 Re? 
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 Problem 1 - The values calculated from the equation for R are shown in the table 
below. Note: This is a good opportunity to go over the concept of 'significant figures', 
and why calculator digits have to be interpreted very carefully in the context of the 
actual accuracy of the input numbers. The particle densities below establish the 
maximum number of significant figures that students should quote in the final answers. 

Storm Date Day 
Of Year

Density 
(particle/cc) 

Speed 
(km/s) 

Max 
Sig. 
Figs 

R  
(km) 

1 11/20/2003 324 49.1 630 3 42,700 
2 10/29/2003 302 10.6 2125 3 37,000 
3 11/06/2001 310 15.5 670 3 51,000 
4 3/31/2001 90 70.6 783 3 37,600 
5 7/15/2000 197 4.5 958 2 55,000 

 

Problem 2 -  The fastest speed for a solar storm ‘cloud’ is 3000 km/s. What must 
the density be in order that the magnetopause is pushed into the orbits of the 
geosynchronous communication satellites at 6.6 Re (42,000 km)? 
Answer: Solve the equation for D to get: 

For 1500 km/s  V = 1.5 x 108 cm/s, and for R = 6.6, we have 
 
  D =  0.72/ ( 8 x 3.14 x 6.66 x (1.5 x 108)2) =  1.52 x 10-23 gm/cc 
 
Since a proton has a mass of 1.6 x 10-24 grams, this value for the density, D, is equal to  
(1.52 x 10-23/ 1.6 x 10-24) =  9.5 protons/cc.  
 
 
Extra Credit: Have students compute the density if the solar storm pushed the 
magnetopause to the orbit of the Space Station (about R = 1.01 RE). 
Answer: D =  3 x 10-19 gm/cc or 187,000 protons/cc. A storm with this density has 
never been detected, and would be catastrophic! 

Space Math @ NASA                                     http://spacemath.gsfc.nasa.gov 



32 The Pressure of a Solar Storm 

 The ACE satellite measures the 
density and speed of the solar wind as it 
approaches Earth, and also measures the 
strength of its magnetic field. Both the 
magnetic field, and the kinetic energy of 
the particles, cause a build-up of pressure 
acting upon Earth’s magnetic field. This 
forces Earth’s magnetic field closer to the 
planet’s surface, and can expose satellites 
orbiting Earth to the potentially harmful 
effects of cosmic rays and other high-
energy particles. Based on actual data 
from the ACE satellite, in this problem you 
will calculate the particle and magnetic 
pressure and determine the distance from 
Earth of the pressure equilibrium region of 
the magnetic field, called the 
magnetopause. 
 The equations to the left give the 
magnetopause distance, R, in multiples of 
Earth's radius (6,378 km), and the 
magnetic (Pm) and ram (Pr) pressures in 
units of microErgs/cm3, once the sped of 
the cloud (V in km/sec), density of the 
cloud (N in particles/cm3) and the strength 
of the cloud's magnetic field (B in 
nanoTeslas) are specified. 

 
 
 

1
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1.8 10xR
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⎛ ⎞
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Pr=1.6x10 NV

Pm=4.0x10 B
 

Date Flare N 
(particle/cc) 

V 
(km/s) 

B  
(nT) 

Pr Pm Distance 
(Re) 

9-7-2005 X-17 50 2500 50 5.0 0.01 4.2 
7-13-2005 X-14 30 2000 20    
1-16-2005 X-2.8 70 3700 70    
10-28-2003 X-17 100 2700 70    
11-4-2003 X-28 80 2300 49 6.8 0.01 4.0 
4-21-2002 X-1.5 20 2421 10    
7-23-2002 X-4.8 40 1200 15    
4-6-2001 X-5.6 20 1184 20    
7-14-2000 X-5.7 30 2300 60    
11-24-2000 X-1.8 50 2000 10 3.2 0.0004 4.6 
8-24-1998 X-1 15 1500 10    

Problem 1:  Use the formulae and the values cited in the table to complete the last three 
columns. A few cases have been computed as examples.  
 
Problem 2:  A geosynchronous communications satellite is orbiting at a distance of 6.6 Re  
(1 Re = 1 Earth radius= 6,378 km). For which storms will the satellite be directly affected by 
the solar storm particles? 
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Answer Key: 32 
 
 
 
 
 

Date Flare N 
(particle/cc) 

V 
(km/s) 

B  
(nT) 

Pr Pm Distance 
(Re) 

9-7-2005 X-17 50 2500 50 5.0 0.01 4.2 
7-13-2005 X-14 30 2000 20 1.9 0.002 5.0 
1-16-2005 X-2.8 70 3700 70 15.3 0.02 3.5 
10-28-2003 X-17 100 2700 70 11.7 0.02 3.7 
11-4-2003 X-28 80 2300 49 6.8 0.01 4.0 
4-21-2002 X-1.5 20 2421 10 1.9 0.0004 5.0 
7-23-2002 X-4.8 40 1200 15 0.9 0.0009 5.6 
4-6-2001 X-5.6 20 1184 20 0.4 0.002 6.3 
7-14-2000 X-5.7 30 2300 60 2.5 0.01 4.7 
11-24-2000 X-1.8 50 2000 10 3.2 0.0004 4.6 
8-24-1998 X-1 15 1500 10 0.5 0.0004 6.1 
Note: Density and magnetic field strength are estimates for purposes of this calculation only. 

Problem 1:  Use the formulae and the values cited in the table to complete the last three 
columns. 
 
        Answer:  See above shaded table entries. This is a good opportunity to use an Excel 
spreadsheet to set up the calculations. This also lets students change the entries to see how 
the relationships change, as an aid to answering the remaining questions. 
 
 
 
Problem 2:  A geosynchronous communications satellite is orbiting at a distance of 6.6 Re. 
For which storms will the satellite be directly affected by the solar storm particles? 
    
        Answer:  If the equilibrium radius is less than 6.6 Re, the satellite will be outside Earth's 
protective magnetosphere and within the region of space directly affected by the storm 
particles and fields.  This condition is satisfied for all of the storms except for the ones on   
April 6, 2001 and August 24, 1998 
 
 Note to Teacher:  Ram pressure is the pressure produced by a cloud of particles traveling 
at a particular speed with a particular density. We call this a ‘ram’ pressure because it is also 
the pressure that you feel as you ‘ram’ your way through the air when you are in motion. 
Because only the relative speed is important, you will feel the same pressure if you are 
‘stationary’ and a gas is moving past you at a particular speed, or if the gas is ‘stationary’ and 
you are trying to move through it at the same speed. Technically, ram pressure is the product 
of the gas density and the square of this relative speed.   
 The values for the ram pressure (Pr) are all substantially larger than the values for 
the magnetic pressure (Pm), so we conclude that ram pressure is stronger than the cloud’s 
magnetic pressure. This means that when the cloud impacts another object such as Earth, it 
is mostly the ram pressure of the cloud that determines the outcome of the interaction. 
 The image used in this problem shows a computer-calculated model of Earth's 
magnetic field during compression. The yellow coloration indicates regions of maximum 
pressure. Image courtesy the University of Michigan         
                                                   http://www.tecplot.com/showcase/studies/2001/michigan.htm 
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Exploring Magnetic Energy 33 
 Most science courses discuss the 
various familiar forms of energy such as 
kinetic, potential, chemical, thermal and 
electrical. Most courses also discuss 
magnetism, and electromagnetism. Combining 
these two ideas, we can imagine that magnetic 
fields also store and release energy – 
magnetic energy. This energy plays an 
important role in creating many of the most 
dramatic events scientists study, from solar 
flares and the Northern lights, to pulsars. 
 Most objects that astronomers study 
have shapes that can be approximated as 
spheres, or cylinders. Here are the formulas 
for the volumes, V, of these shapes. In these 
formulae to the right, the variables are as 
follows: 
               R = radius of sphere or cylinder  
               h = height of cylinder 

The amount of magnetic energy, Em,  
for a field strength, B, given in Gauss 
units and a volume, V, given in cubic 
centimeters can be calculated from this 
formula:

 For example, a cubical region of space near a toy bar magnet 1000 centimeters  on a 
3side has a magnetic field with a strength of B = 150 Gauss.  The volume V = (1000)  = 1.0 x 

9 3 2 2 9 1110  cm , and so Em = B  V/8π = (150)  (1.0 x 10 )/ ( 8 x 3.141) =  8.9 x 10  ergs. 
 
Problem 1 - Using the formulas above, calculate the total magnetic energy, Em,  of each 
system in the table below, based on the assumed shape indicated. You will need to use 
scientific notation and a calculator!

Object Shape B R h Em 
(Gauss) (cm) (cm) (ergs) 

Earth Sphere 0.5  6.4x108    

Geotail Cylinder 0.002 5 x 109 1.5 x1010  

Sun Sphere 5.0 6.9x1010   
Solar Cylinder 100 5 x 109 2.0x109  

Prominence 
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Answer  Key                                                   33 

 
 
Earth: 8 3 24 3 24 3     Volume of sphere = 1.333 x 3.141 x (6.4 x 10  cm)  =  1094.8 x 10   cm  = 1.1 x 10  cm
   

2 24Em = 0.0398 x (.5)  x 1.1 x 10  = 1.1 x 1022 ergs. 
 
 
Geotail: 9 2 10 28 3 30 3  Volume of cylinder = 3.141 x (5 x 10  cm)   x 1.5 x 10  cm =  117.8 x 10  cm  = 1.2 x 10  cm
 
  2 30 23Em = 0.0398 x (0.002) x 1.2 x 10  = 1.9 x 10  ergs 
 
 
Sun:  Volume of sun = 1.38 x 1033 cm3 

   

Em =  1.4 x 1033 ergs 
 
 
Solar Prominence:   Volume of cylinder =  1.6 x 1029 cm3

 
  Em = 6.4 x 1031 ergs 

Object Shape B 
(Gauss) 

R 
(cm) 

H 
(cm) 

Em 
(ergs) 

Earth Sphere 0.5  6.4x108   1.1x1022

Geotail Cylinder 0.002 5 x 109 1.5 x1010 1.9x1023  

Sun Sphere 5.0 6.9x1010  1.4 x 1033

Solar 
Prominence 

Cylinder 100 5 x 109 2.0x109 6.4 x 1031

Definitions: 
 
The Geotail is the extension of Earth's magnetosphere into a comet-like tail in the opposite direction of 
the Sun. The magnetic energy released in the geotail causes charged particles to flow along the 
magnetic lines of force into Earth's Polar Regions, causing the Aurora Borealis and Aurora Australis. 
 
Solar prominences are loops of magnetic force above large sunspots. The magnetic energy released 
by prominences can lead to solar flares and expulsions of gas called Coronal Mass Ejections. 
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34 Magnetic Forces - I 

 When we play with toy magnets, we 
do 
be 
on 

t it 
er.  
sm 

the 
 is 
les 
on 
eir 

experience what we call a magnetic force, but we 
not do so directly. If we did, your fingers would 
able to actually feel magnetic forces just like the ir
filings do! 
 An important aspect of magnetism is tha
can only be directly experienced by charged matt
Unlike gravity, we do not experience magneti
directly. 
 One way to think of this is that we 'feel' 
magnetic forces in bar magnets because the force
first communicated to the charged partic
(electrons, protons and atomic dipoles) in the ir
magnets. The particles then 'communicate' th
reactions to the magnetic field to our hands that are 
gripping the magnet.  
 At its most elementary level, a magnetic field 
only produces a force on moving, charged particles. 
This is called the Lorentz Force, and its magnitude is 
given by the equation to the right. Here are some 
interesting facts about magnetic forces: 
 1) The charged particle (q) has to be moving 
in the magnetic field (B) to react to this force (V can't 
be zero).  
 2) If the particle's speed is exactly in the same 
direction as B, it actually feels no force at all. 
 3) The direction of the force will always be 
exactly perpendicular to the plane that contain B and 
the plane that contains the motion of the particle:  V. 

F=qVB 
 
q = electric charge (Coulombs) 
V = speed of particle (meters/sec) 
B = Magnetic field (Teslas) 
 
F   will be in units of Newtons 

-19Problem 1 - A charged particle in Earth's magnetic field with q =  +1.6 x 10  Coulombs 
travels at +2,500 km/sec along the positive X-axis in a magnetic field with a strength of B = 
+15 nanoTeslas along the positive Y-axis. What will be the magnitude and direction of the 
Lorentz force acting on this particle?  
 
 
 
 
 
Problem 2 - A magnet produces a field along the Z-axis of +45.2 Teslas. A proton with a 

-19charge of  +1.6 x 10  Coulombs is introduced into the chamber with a speed of 100,000 
kilometers/sec along the -X-axis direction. What is the Lorentz force acting on this particle, 
and in which direction? 
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34 Answer Key 

 Problem 1 - A charged particle in Earth's magnetic field with q =  +1.6 x 10-19 Coulombs 
travels at 1,000 km/sec along the positive X-axis in a magnetic field with a strength of B = 15 
nanoTeslas along the positive Y-axis. What will be the magnitude and direction of the Lorentz 
force acting on this particle?  
Answer:  Convert 2,500 km/sec to meters/sec to get  V = +2.5 x 108 m/s. Convert 15 
nanoTeslas to Teslas to get  B=+1.5 x 10-8 Teslas. Then  
F = q V B 
F = (+1.6 x 10-19) x (+2.5 x 108) x (+1.5 x 10-8)  
F =  +6.0 x 10-19 Newtons. Because F is perpendicular to both V and B it must be along the 
only remaining axis; the Z-axis. Because of the positive sign of F, the Lorentz force on the 
particle is in the positive direction along the Z-axis. 
 
 
Problem 2 - A magnet produces a field along the Z-axis of +45.2 Teslas. A proton with a 
charge of  +1.6 x 10-19 Coulombs is introduced into the chamber with a speed of 100,000 
kilometers/sec along the -X-axis direction. What is the Lorentz force acting on this particle, and 
in which direction? 
 
Answer:  Convert 100,000 km/sec to meters/sec to get  V = -1.0 x 1010 m/s. Then  
F = q V B 
F = (+1.6 x 10-19) x (-1.0 x 1010) x (+45.2)  
F =  -7.2x10-8 Newtons. Because F is perpendicular to both V (along the X axis) and B (along 
the Z axis) it must be along the only remaining axis; the Y-axis. Because of the negative sign 
of F, the Lorentz force on the particle is in the negative direction along the Y-axis. 
 
 
Note: Huge instruments such as the Stanford Linear Accelerator (SLAC)  use the Lorentz force 
provided by powerful quadrupole magnets like the one shown below to guide streams of 
particles into high-energy  beams. 

Electromagnets, like this quadrupole 
("four-pole") magnet, focus particle 
beams in the accelerator. There are 
four steel pole tips, two opposing 
magnetic north poles and two 
opposing magnetic south poles. The 
steel is magnetized by a large electric 
current that flow in the coils of tubing 
wrapped around the poles. 
 Steering and focusing 
magnets such as these are rated at 
about 2 Teslas. More intense fields 
exceeding 8 Teslas can be generated 
using superconducting technology. 
This allows the accelerators to be 
made smaller in size. 
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35 Magnetic forces and Particle Motion. 

 Magnetic forces are more complicated than gravity in several important ways.  
Unlike gravity, magnetic forces depend on the degree to which a particle is charged. Also 
unlike gravity, magnetic forces possess a quality called ‘polarity’. All magnets have both a 
north and a south ‘pole’. Because of the property of polarity, the motion of charged particles 
in a magnetic field is more complicated than the motion under gravitational forces alone. 
 One common motion is for a charged particle to move in a spiral path along a line of 
magnetic force. As the particle moves along the field, it also executes a circular 'orbit' 
around the line of force, so its path resembles a helix. The spiral path can be thought of as 
a circular path with a radius, R, which moves at a constant speed along the line of force. 
Adding up the ‘circular’ and ‘linear’ motions of the particle gives you a spiral path like an 
unwound spring or ‘Slinky’ toy. 
 To 'orbit' the magnetic field line, the Lorentz force F = qVB must be equal to the 
centrifugal force acting on the particle given by F = mV2/R. The formula that reflects this 
balance is just: 

 

where q is the charge on the particle (in 
Coulombs), V is the speed of the particle as 
it orbits perpendicular to the line of force (in 
meters/s), B is the magnetic field strength 
(in Teslas), m is the mass of the particle (in 
kilograms), and R is the radius of the 
particle’s orbit (in meters). 

 
Problem  1 – What is the relationship for R after solving and simplifying this equation? 
 
 
Problem  2 – An electron with a charge q = 1.6 x 10-19 Coulombs and a mass m = 9.1 x 
10-31 kilograms is traveling at V = 1.0 x 109 meters/sec in a magnetic field with a strength 
B = 0.00005 Teslas. What is the radius of its spiral orbit in meters? 
 
 
Problem  3 -  If an oxygen ion has twice the electron’s charge, and 29400 times an 
electron’s  mass, what will its spiral radius be for the same values of B and V in Problem 
1? 
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Answer Key                                            35 

 
Problem 1 - What is the relationship for R after solving and simplifying this equation? 
Answer:  After a little algebra: 

 

 

becomes 

Problem  2 – An electron with a charge q = 1.6 x 10-19 Coulombs and a mass m = 9.1 
x 10-31 kilograms is traveling at V = 1.0 x 109 meters/sec in a magnetic field with a 
strength B = 0.00005 Teslas. What is the radius of its spiral orbit in meters? 
 
Answer:  From the equation that we just solved for R in Question 1, 

R  =  (9.1 x 10
-31

) x (1.0 x 10
9
) / ( 1.6 x 10

-19
 x 0.00005) 

 
R  =   ( 9.1 x 1.0 / (1.6 x 5))  x 10 (-31 + 9 +19 + 5) 

R  =  113 meters. 
 
 
 
 
Problem  3 -  If an oxygen ion has twice the electron's charge, and 29400 times an 
electron’s  mass, what will its spiral radius be for the same values of B and V in 
Problem 1? 
 
Answer:  The formula says that if you double the charge, the radius is decreased by 
½. If you increase the mass by 29400 times, then the radius will also increase by the 
same amount. So, the net change in R is (29,400/2) = 14700 times the electron’s 
radius or  14700 x 113 meters = 1.66 million meters  or 1,660 kilometers. Students can 
solve it this way, or simply substitute into the equation for R,   B = 0.00005, V = 1.0 x 
109, q = 2 x (1.6 x 10-19) , m = 29400 x 9.1 x 10-31
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36 The Mass of the Van Allen Radiation Belts 

 The van Allen 
Radiation Belts were 
discovered in the late-1950's 
at the dawn of the Space 
Age. They are high-energy 
particles trapped by Earth's 
magnetic field into donut-
shaped clouds.  
 

Earth's inner magnetic field has a 'bar magnet' shape that follows the formula  
 
    R(λ) = L cos2λ  
 
where the angle, λ, is the magnetic latitude of the magnetic field line emerging from Earth's 
surface, and L is the distance to where that field line passes through the magnetic 
equatorial plane of the field. The distance, L, is conveniently expressed in multiples of 
Earth's radius (1 Re = 6378 kilometers) so that L=2 Re indicates a field line that intersects  
Earth’s magnetic equatorial plane at a physical distance of 2 x 6378 km = 12,756 km from 
Earth's center.  
 To draw a particular field line, you select L, and then plot R for different values of λ.  
Because the van Allen particles follow paths along these field lines, the shape of the 
radiation belts is closely related to the shape of the magnetic field lines.  
 
Problem 1 -  Using the field line equation, plot in polar coordinates a field line at the outer 
boundary of the van Allen Belts for which L = 6 Re, and on the same plot, a field line at the 
inner boundary where L=0.5 Re. Shade-in the region bounded by these two field lines. 
 
 
Problem 2 – If you rotate the shaded region in Problem 1 you get a 3-d figure which looks 
a lot like two nested toroids. Approximate the  volume of the shaded region by using the 
equation for the volume of a torus given by V = 2 π2 r R2  where R is the internal radius of 
the circular cross-section of the torus, and r is the distance from the Origin (Earth) to the 
central axis of the torus. (Think of the volume as turning the torus into a cylinder with a 
cross section of πR2 and a height of 2 π r).  
 
Problem 3 - Assuming that the maximum, average density of the van Allen Belts is about 
100 protons/cm3, and that the mass of a proton is 1.6 x 10-24 grams, what is the total mass 
of the van Allen Belts in A) kilograms? B) grams? 
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Answer Key 
Problem 1 - This may be done, either using an HP-83 graphing calculator, or an Excel spreadsheet. 
The later example is shown below. (Note the scale change). For Cartesian plots in Excel, (X-Y) you will 
need to compute X and Y parametrically as follows:  (Polar to Cartesian coordinates) X = R cos(λ), y = 
R sin(λ), then  since R = L cos2(λ) we get  X = Lcos3(λ) and Y = L cos2(λ)sin(λ). 
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Problem 2 – Answer:  The outer torus of the van Allen Belt model has an internal radius of R = 
(6Re – 0.5 Re)/2 = 2.75 Re or  17540 km. The radius of the Belts, r = 2.75 Re or 17,540 km. 
This makes the total volume Vouter = 2 (3.141)2 (17540 km x1000 m/km)3 =  1.1 x 1023 
meters3. The volume of the inner torus is defined by R = 0.25Re = 1595 km and r = 0.25 Re = 
1595 km, so its volume is  Vinner = 2 (3.141)2 (1595 km x1000 m/km)3 =  8.0 x 1019 meters3

The approximate volume of the shaded region in Problem 1 is then the difference between 
Vouter and Vinner or  1.1 x 1023 meters3    - 8.0 x 1019 meters3  =  11000 x 1019 – 8.0 x 1019 =  
1.1 x 1023 meters3   because although it is technically correct to subtract the inner volume 
(containing no Belt particles) from the outer volume, practically speaking, it makes no 
difference numerically. This would not be the case if we had selected a much larger inner 
boundary zone for the problem! 
 
 
 
Problem 3 - Assuming that the maximum, average density of the van Allen Belts is about 100 
protons/cm3, and that the mass of a proton is 1.6 x 10-24 grams, what is the total mass of the 
van Allen Belts in A) kilograms?  B) grams? 
 
Answer:   Mass = density x Volume, V =  1.1 x 1023 meters3 . 
  D =  100 protons/cm3 x 1.6 x 10-24 grams/proton =   1.6 x 10-22 grams/cm3  which, when 
converted into MKS units gives  1.6 x 10-22 g/cm3 x (1 kg/1000 gm) x (100 cm/1 meter)3 =  1.6 
x 10-25 kg/m3.  So the total mass is about  M = 1.6 x 10-25 kg/m3  x  1.1 x 1023 meters3  and so 
A) M =  0.018 kilograms.    
 
B) M = 18 grams. 
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37 Moving Magnetic Filaments Near Sunspots 

 
 
 

 These two images were taken by the Hinode solar observatory on October 30, 
2006. The size of each image is 34,300 km on a side.  The clock face shows the time 
when each image was taken, and represents the face of an ordinary 12-hour clock.  
 
Problem 1 -  What is the scale of each image in kilometers per millimeter? 
 
 
Problem 2 -  What is the elapsed time between each image in;  A) hours and minutes?  
B) decimal hours? C) seconds? 
 
 
Carefully study each image and look for at least 5 features that have changed their 
location  between the two images. (Hint, use the nearest edge of the image as a 
reference). 
 
 
Problem 3 -   What direction are they moving relative to the sunspot? 
 
Problem 4 -   How far, in millimeters have they traveled on the image? 
 
Problem 5 -  From your answers to questions 1, 2 and 4, calculate their speed in 
kilometers per second, and kilometers per hour. 
 
Problem 6 -  A fast passenger  jet plane travels at 600 miles per hour. The Space Shuttle 
travels 28,000 miles per hour. If 1.0 kilometer = 0.64 miles, how fast do these two craft 
travel in kilometers per second? 
 
Problem 7 -   Can the Space Shuttle out-race any of the features you identified in the 
sunspot image? 
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Answer Key: 
 

 
 
 
 
 

Problem 1 -  What is the scale of each image in kilometers per millimeter?  Answer: The pictures are 75 mm 
on a side, so the scale is  34,300 km /75mm =  457 km/mm 
 
Problem 2 -  What is the elapsed time between each image  in; 
                 A)  hours and minutes?   About  1 hour and 20 minutes.  
                 B)  decimal hours?          About  1.3 hours      
                 C)  seconds?                   About  1.3 hours x 3600  seconds/hour =  4700 seconds 
 
Carefully study each image and look for at least 5 features that have changed their location between the two 
images. (Hint, use the nearest edge of the image as a reference). Students may also use transparent paper 
or film, overlay the paper on each image, and mark the locations carefully. 
  The above picture shows one feature as an example.  
 
Problem 3 -   What direction are they moving relative to the sunspot? 
    Answer: Most of the features seem to be moving away from the sunspot. 
 
Problem 4 -   How far, in millimeters have they traveled on the image?  Answer: The feature in the above 
image has moved  about 2 millimeters. 
 
Problem 5 -  From your answers to questions 1, 2 and 4, calculate their speed in kilometers per second, and 
kilometers per hour. Answer:  2 mm x 457 km/mm =  914 kilometers in 4700 seconds =  0.2 kilometers/sec 
or  703 kilometers/hour.   
 
Problem 6 -  A fast passenger  jet plane travels at 600 miles per hour. The Space Shuttle travels 28,000 
miles per hour. If 1.0 kilometer = 0.64 miles, how fast do these two craft travel in kilometers per second?  Jet 
speed =  600 miles/hr x ( 1 / 3600 sec/hr)  x  (1 km/0.64 miles)  =  0.26 km/sec Shuttle = 28,000 x (1/3600) x 
(1/0.64) = 12.2 km/sec. 
 
Problem 7 -  Can the Space Shuttle out-race any of the features you identified in the sunspot image? 
Answer: Yes, in fact a passenger plane can probably keep up with the feature in the example above! 
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The Earth and its Magnetosphere IMAGE simulated textbook page . . . 117

9.0  Earth's Magnetism  
    An ordinary compass works because the Earth is itself a giant 
magnet with a north and a south pole. Navigators have known 
about the pole-seeking ability of magnetized compass needles and 
lodestone for thousands of years. During the last two centuries, 
much more has been learned about the geomagnetic field, and 
how it shapes the environment of the Earth in space. 
  The geomagnetic field is believed to be generated by a magnetic
dynamo process near the core of the Earth through the action of 
currents in its outer liquid region. Geologic evidence shows that it 
reverses its polarity every 250,000 to 500,000 years. In fact, the 
geomagnetic field is decreasing in strength by 5% per century, 
suggesting that in a few thousand years it may temporarily vanish 
as the next field reversal begins. Although the geomagnetic field 
deflects high-energy cosmic rays, past magnetic reversals have 
not caused obvious biological impacts traceable in the fossil 
record. Earth's atmosphere, by itself, is very effective in shielding 
the surface from cosmic rays able to do biological damage. The 
location of the magnetic poles at the surface also wanders over 
time at about 10 kilometers per year. Mapmakers periodically 
update their maps to accommodate this drift.
  The domain of space controlled by Earth’s magnetic field is 
called the magnetosphere. The geomagnetic field resembles the 
field of a bar magnet, however there are important differences due 
to its interaction with the solar wind: an interplanetary flow of 
plasma from the Sun. The magnetosphere is shaped like a comet 
with Earth at its head. The field on the dayside is compressed 
inwards by the pressure of the solar wind. A boundary called the 
magnetopause forms about 60,000 kilometers from Earth as the 
solar wind and geomagnetic field reach an approximate pressure 
balance. The field on the night side of Earth is stretched into a 
long geomagnetic tail extending millions of kilometers from 
Earth. Above the polar regions, magnetic field lines from Earth 
can connect with  field lines from the solar wind forming a 
magnetospheric cusp where plasma and energy from the solar 
wind may enter. Ionized gases from Earth's upper atmosphere can 
escape into the magnetosphere through the cusp in gas outflows 
called polar fountains. The magnetosphere is a complex system 
of circulating currents and changing magnetic conditions  

often affected by distant events on the Sun called “space weather.”  
The conveyor belt for the worst of these influences is the ever-
changing solar wind itself. Space weather “storms” can trigger 
changes in the magnetospheric environment,  cause spectacular 
aurora in the polar regions, and lead to satellite damage and even 
electrical power outages.

9.1 Trapped Particles and other Plasmas

  Within the magnetosphere there are several distinct populations 
of neutral particles and plasmas. The Van Allen Radiation Belts 
were discovered in 1958 during the early days of the Space Age. 
The inner belts extend from altitudes between 700 to 15,000 km 
and contain very high-energy protons trapped in the geomagnetic 
field. The outer belt extends from 15,000 to 30,000 km and mostly 
consists of high-energy electrons. Geosynchronous satellites orbit 
Earth just outside the outer belt. Human space activity is confined 
to the zone within the inner edge of the inner belt. Space suited 
astronauts exposed to the energetic particles in the Van Allen Belts 
would receive potentially lethal doses of radiation. The particles 
that make up the Van Allen Belts bounce along the north and 
south-directed magnetic field lines  to which they are trapped like 
water flowing in a pipe. At the same time, there is a slow drift of 
these particles to the west if they are positively charged, or east if 
they are negatively charged. There are also three additional 
systems of particles that share much the same space as the Van 
Allen Belts, but have much lower energies: the geocorona; the 
plasmasphere; and the ring current. 
  Extending thousands of kilometers above Earth is the 
continuation of its tenuous outer atmosphere called the geocorona. 
It is a comparatively cold, uncharged gas of hydrogen and helium 
atoms whose particles carry little energy. In the geocoronal region, 
there is a low-energy population of charged particles called the 
plasmasphere which are a high-altitude extension of the 
ionosphere. Unlike the geocorona, the plasmasphere is a complex, 
ever-changing system controlled by electrical currents within the 
magnetosphere. These changes can cause this region to fill up with 
particles, and empty, over the course of hours or days.    

Figure 5-1 Earth’s Magnetic Field.
The geomagnetic field resembles the field of an 
ordinary bar magnet. The north magnetic pole of Earth 
is located near the south geographic pole while the 
south magnetic pole of Earth is located near the north 
geographic pole. The figure also shows the major 
regions of Earth’s magnetosphere. The dotted region 
contains the Van Allen Radiation Belts. The red region 
is the plasmasphere.   
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Figure 5-3  The Ring Current.
From above the North Pole, the current 
is seen flowing around the equatorial 
regions of the Earth.

Figure 5-2  The Plasmasphere.
A view from above the North Pole 
of the plasmasphere illuminated by 
ultraviolet light from the Sun. The Sun is 
located beyond the upper right corner.
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Figure 5-4  The Auroral Oval.
From space, the aurora borealis appears 
as a ring of light that changes its 
appearance from minute to minute.

  During severe storms, compasses display incorrect bearings as 
the surface geomagnetic field changes its direction. In the 
equatorial regions, an actual decrease in the strength of the 
geomagnetic field can often be measured. This is generally 
attributed to the existence of a temporary river of charged 
particles flowing between 6,000 to 25,000 kilometers above 
ground: the ring current. These particles have energies between 
those within the plasmasphere and those in the Van Allen Belts. 
They appear to originate within the geomagetic tail as charged 
particles that are injected deep into the magnetosphere. Most of 
the time there are few particles in the ring current, but during 
severe storms, it fills up with a current of millions of amperes 
which spread into  an invisible ring encircling Earth. Just as a 
flow of current through a wire creates its own magnetic field, the 
ring current generates a local magnetic field that can reduce some 
of Earth's surface field by up to 2% over the equatorial regions. 
   In addition to these families of particles, there are also powerful 
currents of particles that appear during especially stormy 
conditions, and lead to visually dramatic phenomena called the 
aurora borealis and the aurora australis: the Northern and 
Southern lights.

9.2  The Aurora

  For thousands of years humans have been able to look up at the 
northern sky and see strange, colorful, glows of light.  By the 
early 1900's, spectroscopic studies had shown that auroral light 
was actually caused by excited oxygen and nitrogen atoms 
emitting light at only a few specific wavelengths. The source of 
the excitation was eventually traced to currents of electrons and 
protons flowing down the geomagnetic field lines into the polar 
regions where they collide with the atmospheric atoms. However, 
aurora are not produced directly by solar flares. Radio 
communications blackouts on the dayside of Earth are triggered    

by solar flares as these high-energy particles disturb the 
ionosphere. When directed toward Earth, expulsions of matter by 
the Sun called coronal mass ejections contribute to the 
conditions that cause some of the strongest aurora to light up the 
skies. At other times, a simple change in magnetic polarity of the 
solar wind from north-directed to south-directed seems to be  
enough to trigger aurora without any obvious solar disturbance.
  Because of the existence of the magnetospheric cusp on the 
dayside of Earth, solar wind particles can, under some conditions, 
flow down this entryway into the polar regions. This causes 
daytime aurora, or the diffuse red glows of nightime auroras. This 
is, virtually, the only instance where solar wind particles can 
directly cause aurora. It is not, however, the cause of the 
spectacular nightime polar aurora that are so commonly 
photographed. To understand how these aurora are produced, it is 
helpful to imagine yourself living inside a television picture tube. 
We don’t see the currents of electrons guided by magnetic forces, 
but we do see them paint serpentine pictures on the atmosphere, 
which we then see as the aurora. The origin of these currents is in 
the distant geomagnetic tail region, not in the direct inflow of 
solar wind plasma. 
  When the polarity of the solar wind’s magnetic field turns 
southward, its lines of force encounter the north-directed lines in 
Earth's equatorial regions on the dayside. The solar wind field 
lines then connect with Earth's field in a complex event that 
transfers particles and energy into Earth's magnetosphere. While 
this is happening near Earth, in the distant geomagnetic tail, other 
changes are causing the geomagnetic field to stretch like rubber 
bands, and snap into new magnetic shapes. This causes billions of 
watts of energy to be transferred into the particles already trapped 
in the magnetosphere out in these distant regions. These particles, 
boosted in energy by thousands of volts, then flow down the field 
lines into the polar regions to cause the aurora, like the electrons 
in a television picture tube that paint a pattern on the phosphor 
screen.



NASA Resources on Magnetism  
 

 Despite the fact that, next to gravity, magnetism is the most popularly-known 
force of nature, there are surprisingly few resources at NASA that express any of its 
interesting quantitative aspects. Let alone any mathematical expression of its many 
qualities. Below I have collected together the resources that NASA has identified as 
recommended resources for educators, based upon the item's having been 
submitted to an independent quality review panel and passed muster for their 
scientific and educational accuracy and content. The ones in this list included some 
mathematical or quantitative aspect to them. Usually this is directed at elementary 
or middle school students below grade 8.   
 It is still fairly common for science courses in grades 8 or lower not to attempt 
very much mathematical exposition, or quantitative discussion, of magnetism. The 
items below are usually more advanced than what most science teachers would 
prefer to cover in middle school science classes, although high school teachers ( 
physics) often find these resources fertile ground for hands-on laboratory 
experiments in magnetism to get their students familiar with the basic concepts. 
 
 
Solar Storms and You!  (IMAGE Mission; Grades 7-9) 
http://spacemath.gsfc.nasa.gov/NASADocs/nasa2.pdf - This was the first series of 
books on the magnetic interaction between the sun and earth, and was one of 5 
guides featuring 3-5 math problems suitable for middle school students. The 
problems cover many aspects of graph analysis, using graphing calculators, and 
doing simple forecasting. 
 
 
Exploring Earth's Magnetic Field  (IMAGE Mission; Grades 7-9) 
http://spacemath.gsfc.nasa.gov/NASADocs/magbook2002.pdf - This is a collection 
of 23 math problems spanning Grades 6-12 that cover magnetic fields, earth's 
magnetic field, solar storms and how to build and use a simple 'jam jar' 
magnetometer to detect magnetic storms. 
 
 
A Guide to Earth's Magnetic Personality  (THEMIS Mission; Grades 9-14) 
http://cse.ssl.berkeley.edu/SEGwayed/lessons/exploring%5Fmagnetism/earths%5F
magnetic%5Fpersonality/ - An historical introduction to the discovery of terrestrial 
magnetism, why we have solar storms, and the role of ground and space-based 
magnetometers in studying the geomagnetic field and its changes. A few brief math 
problems related to the 3-D shape of the magnetic field. 
 
 
Exploring Magnetism on Earth (THEMIS Mission; Grades 8-12) 
http://cse.ssl.berkeley.edu/SegWayEd/lessons/exploring_magnetism/magnetism_on
_earth/explore_mag_on_earth.pdf  - All about compass navigation, polar wander 
and reversals with some math-related and hands-on problems and lab activities. 
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Exploring Magnetism - A Teacher's Guide (THEMIS Mission: Grades 6-9 and 8-
12) http://cse.ssl.berkeley.edu/impact/magnetism/MagGuide.htm - This is a web 
portal to 6 topic guides  that cover solar flares, the solar wind, space weather, 
geomagnetism and electromagnetism. Each guide has up to 5 individual math-
related lab activities that explore magnetism in detail, with helpful teacher 
information for how to conduct the various hands-on activities. 
 
 
Exploring Magnetism in Solar Flares (RHESSI Mission; Grades 6-9) 
http://cse.ssl.berkeley.edu/SEGwayed/lessons/exploring_magnetism/in_Solar_Flare
s/  -  This is a detailed exploration of solar magnetism, sunspots, sunspot cycles, 
with a number of math-based exercises in determining scale and speed of solar 
plasmas.   
 
 
Mapping Magnetic Influence (Space Weather Action Center: Grades 6-9) 
http://sunearthday.nasa.gov/swac/materials/Mapping_Magnetic_Influence.pdf - This 
is one of the best step-by-step guides to revealing the magnetic field lines around 
bar magnets using various techniques including the familiar 'iron filing' method, and 
the more accurate 'Magnaprobe' method. Students chart the extent and polarity of 
magnetic fields under sheets of paper and sketch fieldlines in all their complexity, 
without using messy iron filings ,which are banned in many classrooms because of 
safety issues. 
 
 
The Exploration of the Earth's Magnetosphere  (Grades 9-14) 
http://www.phy6.org/Education/Intro.html - This is an extensive, largely non-
mathematical, online textbook that covers virtually all aspects of magnetism.  
 
 
 
 
 
 The next few pages provide you with some basic, and very handy,  
diagrams of magnetic fields represented by field lines.  
 
Image 1 - The classical bar magnet with iron filings from an old 1906 textbook. 
 
Image 2 - Opposite-polarity field lines for two magnets  (North + South poles) 
 
Image 3 - Like-polarity field line pattern for two magnets. (North + North poles) 
 
Image 4 - Computed magnetic field lines for a small magnetized sphere at center. 
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   Additional Resources and Links 
 
 
Here are some resources that will give you a quick introduction to basic geophysics 
and magnetism: 
 

USGS: 
http://geomag.usgs.gov 

 
 

NASA/GSFC – Exploring the Magnetosphere: 
http://www-istp.gsfc.nasa.gov/Education/Intro.html

 
 

NASA/IMAGE: 
http://image.gsfc.nasa.gov/poetry/magnetism/magnetism.html 

 
 
 

Magnetic Reversals and Polar Wander    
http://www.geolab.nrcan.gc.ca/geomag/reversals_e.shtml 

 
 
 

More Magnetic Reversal Info: 
http://www.geomag.bgs.ac.uk/reversals.html 

 
 
 
NASA/IMAGE:  

http:/image.gsfc.nasa.gov/poetry 
 
 
 

NOAA/SEC:  http://www.sec.noaa.gov/SWN 
 
 
 

NASA/NSSDC  International Geophysical Reference Field: 
http://modelweb.gsfc.nasa.gov/models/cgm/cgm.html 
http://ccmc.gsfc.nasa.gov/modelweb/models/igrf.html 
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   A Note from the Author 
 
                                                                                                           August 18, 2009 
 
Dear Teacher and Student,                                   
 
 Magnetism is such a neat force! It was probably the first one we all played 
with when we were young. You don't after all 'play' with gravity, and with magnetism 
you have a keener sense of invisible things going on in the world that you can 
control at least just a bit. It seems like such a simple force, with the exception that it 
seems to have two 'polarities' to keep track of. Gravity just has the one polarity, 
'neutral', and is always attractive. Iron filings show that it has a very distinct 
geometer revealed by the beautiful lines that the filings make out in otherwise empty 
space. But the beauty underscores a very important fact. It took over 4000 years 
since the Chinese first mentioned it, for humans to finally understand how 
magnetism works, and why Nature chose to create such an odd force to do its 
business.  
 This booklet is a hodge-podge of math-related problems having to do with 
magnetism. I designed them as the next logical step beyond what students explore 
in their middle-school Earth Science textbooks. The Lab exercises bridge the 
experiential gap in learning about magnetism so that students can work the 
problems with a bit more intuitive insight as to what is going on.  
 One thing that is important to realize is that, no matter how visually 
compelling the 'magnetic lines of force' model seems to be after working with iron 
filings, there are actually NO individual  lines of magnetism enscribed into the space 
around the magnet. You should think of these 'lines' as just the pattern made by tiny 
rows of compass needles attached end-to-end. Mathematically and for physicists 
,lines of force are a handy model to use to do calculations of magnet intensity. You 
can easily draw on a piece of paper the essential features of a magnetic field in a 
region of space, just by drawing the magnetic field lines that pass through it. This 
becomes a short-hand notion for describing in a drawing the intensity and 
orientation of a magnetic field in space. In many ways, magnetic field lines are like 
the contour curves on a topographic map. They don't exist either, but they sure are 
handy when you are looking at a map and trying to decide the best way to hike into 
a valley! 
 Anyway, have fun with these problems, and enjoy exploring invisible forces. 
They are an important lesson in physics in which we can learn about invisible things 
in the world just by playing with them, examining their consequences upon other 
visible things, and making a few measurements! 
 In the scientific exploration of our physical world, it doesn't get any better 
than this!!! 
 
 
                 Sincerely, 

 
         Dr. Sten Odenwald 
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