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Lecture Tutorial:  Habitable Zone Planets 

 
 
Description:  
This guided inquiry tutorial—along with follow-up exercises that can be done as homework—introduces 
students to various factors that influence the (average) surface temperature of a planet.  Students first 
consider a crude model based principles from blackbody radiation, deducing how the equilibrium surface 
temperature of a planet is related to the intensity of the solar radiation that is incident upon it.  Students 
then introduce albedo into their conceptual model.  They are guided to recognize the importance of the 
effect of greenhouse gases (a detailed treatment of which falls outside the scope of the tutorial) in 
elevating the average surface temperature of a planet like Earth.  Students are also introduced to the “faint 
young Sun paradox”—how on an early Earth could liquid water have been present while the luminosity of 
the Sun was significantly less than it is currently?—and to the possible resolution of that paradox by 
invoking greenhouse effects.  Along the way, students are shown data collected on Earth-like exoplanets 
surveyed by the Kepler project.  This resource is designed to supplement Lecture-Tutorials for 
Introductory Astronomy for lecture-style classrooms as well as for use in recitation or tutorial classrooms. 
 
 
Prerequisite ideas: 
 
● Blackbody radiation:  An ideal blackbody is characterized by perfect absorption of all radiation 

incident upon it. 
● Blackbody radiation:  Total radiative intensity of an ideal blackbody (in W/m2) is proportional to 

equilibrium temperature to the fourth power (R = s T 4, where the Stefan-Boltzmann constant is  
s = 5.67 ´ 10-8 W/(m2K4)). 

● Intensity of radiation from a point source (or spherically symmetric body) varies as 1/r2.  
● Greenhouse effect, nuclear mass and mass-energy equivalence (familiarity) 
 
 
Some instructor notes: 
 
● The instructor “checkpoint” on p. 2 of the tutorial is critical for checking that students can properly 

explain that the power radiated per unit area by each sphere is exactly one-fourth the intensity of the 
incident radiation bathing both spheres, and that that result is independent of the radius.  Even if 
students obtain this final result by the checkpoint, it is worthwhile checking their reasoning on the 
following questions: 

Ø For question in A.1 of part I students should invoke the idea that blackbodies are perfect 
absorbers and that the cross-sectional area of each sphere is important.  (Some students might 
say that the power absorbed by a sphere is equal to “Io(2pr2)”, not Iopr2), thinking that the 
entire hemisphere facing the incident radiation absorbs the same amount per unit area.)   

Ø For question in A.2 students should invoke the idea that each sphere is in thermal equilibrium 
(the idea that each sphere is a blackbody is irrelevant here).  
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● In parts I.B and II.A of the tutorial (p. 2 and p. 4, respectively), you should check students’ answers 
for the surface temperatures of Earth and Mars:   
 
Taking into account only blackbody considerations (part I.B), TEarth ≈ 278.8 K (5.6°C) and 
TMars ≈ 225.8 K (-47.4°C).   
 
Taking into account albedo as well (part II.A), TEarth ≈ 252.2 K (-20.9°C) and TMars ≈ 216.8 K  
(-56.3°C).   

 
 
References: 
 Catling, D. and Zahnle, K. (2020). The Archean atmosphere, Science Advances, 6(9).  
 Feulner, G. (2012). The faint young Sun problem. Reviews of Geophysics, 50(2). 
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A habitable planet is often treated as one for which liquid water can exist somewhere on its surface.  A 
critical feature of a planet to make it habitable is its average surface temperature.  This tutorial will 
introduce you to several factors that affect the average surface temperature of a planet. 

 
 

I. A crude approximation:  Planets as blackbodies 
Let’s first start simple, which means treating a planet as a spherical blackbody.  The figure below shows 
two such spheres, each receiving incident radiation (from our Sun, for instance) of intensity Io.  Note that 
the radii of sphere 2 is twice that of sphere 1.   

In answering the questions below, treat both objects as blackbodies in thermal equilibrium.  (Note:  
Ignore any interactions between the spheres themselves.)   

A. Let Psphere1 represent the total power absorbed (energy 
absorbed per unit time) by sphere 1. 

 
1. Calculate the total power absorbed by sphere 2 

(Psphere2) in terms of Psphere1.  Discuss your 
reasoning with your partners.  

 
 
 
 
 
 
 
 

2. For each sphere, how does the total power that it 
radiates (re-emits) compare to the total power that 
that sphere absorbs?  Explain your reasoning. 

 
 
 
 
 
 
 

3. Let R sphere1 represents the power radiated per unit area by sphere 1.  Calculate the power radiated 
per unit area by sphere 2 (R sphere2) in terms of Rsphere1.  Discuss your reasoning with your partners.  

 
 

 Incident radiation of 
intensity Io 

Sphere 1 
radius ro 

Sphere 2 
radius 2ro 
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4. Use your knowledge of blackbody radiation to explain why the equilibrium temperature of either 
sphere does not depend upon its radius.  

 
 
 
 
 
 

 Please STOP here to have an instructor visit your group and check your results thus far. 

 
B. Our results for the two spheres from part A can be used to help us obtain crude estimates for the 

average (surface) temperatures on Mars and Earth (since rEarth » 2rMars).   
 
The intensity of solar radiation is approximately 1,370 W/m2 at the location of Earth (1.00 AU from 
the Sun).  Treating Earth and Mars right now as ideal blackbodies, calculate the following quantities.  
(Note:  For reference, the value of the Stefan-Boltzmann constant is s = 5.67 ´ 10-8 W/(m2K4).)  

 
• the equilibrium temperature of Earth 

 
 
 
 
 
 
 
 
 
 
 

• the equilibrium temperature of Mars, which is (on average) 1.524 AU from the Sun 
 

Hint:  How can the ratio 1.00/1.524 (» 0.656) help you quantify the intensity of incident solar 
radiation at Mars?   
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The surface temperature on a planet varies, obviously, according to location (from equator to poles).  Our 
results thus far are just crude estimates for average surface temperatures.  Enough variation exists, 
though—as much as 50 K or 60 K from average—that both Earth and Mars fall within the boundaries of 
the so-called “Habitable Zone” for a star like our Sun.  (See Fig. 1 below.)  
 

 
 

Fig. 1:  Exoplanets (and candidates) detected by the now-retired Kepler space telescope.  The vertical axis 
corresponds to the surface temperature of the star that the exoplanet orbits.  The brighter, light green region 
of the graph represent a conservative estimate of the “habitable zones” for different stars.  Earth and Mars 
fall within this zone but not Venus.  (Image credit: NASA/Ames Research Center/Wendy Stenzel) 

 
C. The horizontal axis of the plot, labeled “Energy received by planet,” is normalized so that Earth has a 

value of “1.”   
 

Using your work from part B on the preceding page—and knowing that the average orbital distance 
for Venus (also shown on the plot) is 0.72 AU—show that the horizontal axis can be more precisely 
labeled as “intensity of incident radiation.”   

 
 
 
 
D. Assuming that exoplanet “7954.01,” shown in the plot between Earth and Mars, orbits a star that has 

the same size and surface temperature of our Sun, estimate (in AU) its orbital distance.  
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II. Refinements to our model 
A. Albedo.  One important factor that makes actual planets different from blackbodies (upon which our 

crude model has been based thus far) is that planets can reflect some of the radiation incident upon it.  
The albedo (“a”) of a planet (or moon, or asteroid) is a number between 0 and 1 that represents the 
average fraction of radiation that is reflected from its surface. 

1. Would a planet having non-zero albedo have an average temperature that is warmer or cooler 
than that predicted by modeling the planet as a blackbody?  Discuss your reasoning with your 
partners. 

 
 
 
 
 
2. Let’s now extend our thinking quantitatively by repeating the average temperature calculations 

from part I.B (on p. 2 of this tutorial).  That is, with your partners, using albedo values of 
aEarth = 0.33 and aMars = 0.15, find new estimates for: 

 
• the equilibrium temperature of Earth 
 
 
 
 
 
 
 
• the equilibrium temperature of Mars 

 
 
 
 
 
 
 

3. The estimate you should obtain here for the average surface temperature of Mars is not far off.  
However, the observed result for Earth is closer to 288 K (15°C), which is more than 35 K (more 
than 35C°) warmer than the result predicted here using blackbody ideas and albedo.   
 
With your partners, identify what phenomenon could account for 
the discrepancy between our model and the observations about 
Earth’s average temperature--and explain why this phenomenon 
has little effect in the case of Mars.   
 
(Note:  A hint is provided in the photo at right!  However, a 
meaningful treatment of this topic is outside the scope of this 
tutorial.)  
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B. Early history of the Sun and the “faint young Sun problem.”  Throughout this tutorial we have treated 
the luminosity of the Sun as isotropic and constant in time.  However, well-accepted solar models 
suggest that the energy output of the Sun has not been constant but rather continually increasing over 
time.  In this section we briefly explore a significant (and also rather intuitive) cause for this behavior.    

In the core of main sequence stars like our Sun, fusion of hydrogen (H) to helium (He) occurs in 
processes including (but not limited to) the one represented here: 

4H → He + 2𝑒! + 2𝜐" 
mH = mproton = 1.6726 × 10-27 kg;  mHe = 6.6448 × 10-27 kg;  me+ = 9.11 × 10-31 kg;  mn @ 0 

1. Using the mass values given above for the H nucleus (proton), the He nucleus, and the positron, 
determine what percentage of the total mass of the four H nuclei is converted to energy. 

Would you expect raising the temperature (i.e., the average kinetic energy) of the H nuclei to 
increase or decrease the rate at which fusion (and hence the energy conversion) occurs?  Why? 

 

 

2. As a result of these processes unfolding, describe in a sentence or two how each of the following 
properties will change.  (Note:  Your intuitions will probably serve you well here!) 

• the particle density (number of particles per unit volume) in the Sun’s core 

• the thermal pressure within the core 

 

 

3. In response to this change in pressure within the core, the outer plasma layers of the star 
gravitationally compress more and more upon the core, in order to keep (hydrostatic) equilibrium 
between the core and the outer layers.  This compression causes a gradual increase in core 
temperature, where H fusion is occurring.  As a result of this process, what must happen to: 

• the rate of energy conversion within the core? 

• the overall luminosity of the star? 

 

We have just now reasoned out why, during the very gradual (billions-of-years long) process of 
hydrogen fusion in our Sun’s lifetime, its luminosity must have increased during that process.  

A serious “paradox” occurs, however.  Extensive evidence exists for the presence of liquid water on 
Earth as far back as 3.0 – 3.5 billion years ago.  Yet, that long ago, the energy output of our Sun must 
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have been significantly less—20% to 30% smaller—compared to the current level.  How could liquid 
water have formed, then?  This “faint young Sun paradox” has not yet been definitively resolved, 
although the most widely accepted idea thought to resolve this paradox is, perhaps not surprisingly, 
greenhouse effects occurring in the atmosphere of early Earth. 

 

III. Extension exercises (may be assigned as homework) 
The model introduced in this tutorial—based on principles from blackbody radiation and albedo—can be 
extended so as to take into account explicitly the size and surface temperature of the star whose “habitable 
zone” we want to describe.  It will be useful to denote the following variables:  

Radius and surface temperature of star:  Rstar, Tstar  Orbital distance of planet from star:  Dorbit 
Radius and surface temperature of planet:  Rplanet, Tplanet Albedo of planet:  a 
 
 
A. Using your knowledge of blackbody radiation and basic geometry of spheres, write algebraic 

expressions for the following quantities: 

• The total power emitted by the star—in terms of Rstar, Tstar, and appropriate constants 
 

• The intensity of the radiation from the star incident upon the planet—in terms of Rstar, Tstar, Dorbit, 
and appropriate constants 

 
• The power absorbed by the planet—in terms of Rplanet, a, Rstar, Tstar, Dorbit, and appropriate 

constants 
 

• The power emitted by the planet (radiating as a blackbody)—in terms of Rplanet, Tplanet, and 
appropriate constants 

 

B. Now take into account the fact that the planet must be in thermal equilibrium by setting equal to each 
other the two relevant expressions from part A.  Solve the resulting equation for the equilibrium 
surface temperature of the planet (Tplanet).  Hint:  Your result should depend upon Rstar, Tstar, Dorbit, a, 
and numerical constants (but not Rplanet, and also not the Stefan-Boltzmann constant, s!). 

 

C. i. Verify your final expression for Tplanet (in the preceding part) by redoing your calculations in part 
II.A of the tutorial (in which you found estimates for the equilibrium temperatures of Earth and 
Mars). 

ii. Consider a star whose mass is 0.80 solar masses and whose surface temperature is 4,500 K.  
Using our quantitative model for average planetary surface temperature (developed in parts A and 
B above), find the orbital distances (in AU) for planets that would have the same average 
temperatures as Earth and Mars.   


