Kronoseismology: Using Saturn's rings to study the planet's internal structure

Information from the rings could complement other attempts to understand the internal structures of Jupiter and Saturn

Cassini

Juno

Seismology is a powerful tool for studying interior structures

Similar patterns are found in the A ring, near mean-motion resonances with Saturn's moons

Ring Particle Orbital Period= 5/6 Janus' Orbital Period

Ring Particle Orbital Period= 12/13 Pandora's Orbital Period Ring Particle Orbital Period= 18/19 Prometheus' Orbital Period

In dense rings, these organized motions drive a propagating spiral wave through the ring

Ring Particle Orbital Period= 5/6 Janus' Orbital Period

The wave pattern maintains a fixed orientation relative to the moon.

Shifts in the peak locations between observations made at different times and longitudes confirm that these are spiral patterns.

At least some of these waves may be due to sectoral normal mode oscillations within the planet.

Marley 1991, Marley and Porco 1993

The prograde-propagating oscillations can organize particle motions near resonances much like a moon can

The strongest patterns are found at first-order resonances: Mode rotation period $\approx m/(m-1) \times Ring-particle's$ orbit period

Moon orbit period= 1/2 Ring particle orbit period Mode rotation period= 3/2 Ring particle orbit period

A single moon can generate multiple resonant structures All the patterns rotate around the planet at the same speed

A planetary oscillation mode generates a single resonant structure Each pattern rotates around the planet at a different speed.

m=4

m=2

Previous theoretical calculations had shown that some of the unidentified waves could be close to resonance with these modes

We can determine the m-numbers and pattern speeds of these waves by comparing observations taken at different times and longitudes.

For any pair of occultations, we can compute a *phase difference* $\delta\phi$ that quantifies how much the peaks and troughs are out of line.

For any pair of occultations, we can compute a *phase difference* $\delta\phi$ that quantifies how much the peaks and troughs are out of line.

The expected $\delta\phi$ matches the observed $\delta\phi$ for the m=3 mode

The expected $\delta\phi$ matches the observed $\delta\phi$ for the m=3 mode

For several waves, the derived mode-number is close to the predicted value,

For several waves, the derived mode-number is close to the predicted value,

For several waves, the derived mode-number is close to the predicted value,

For several waves, the derived mode-number is close to the predicted value, but there appear to be multiple waves generated by resonances with the m = 2 and m = 3 modes!

Figure 4 from Marley and Porco 1983 Marley and Porco also predicted 0 8 additional resonances with m=5,6,7,8 7 0 and 9 in this region. D 6 3 5 4 3 2 D-Ring C-Ring 65,000 70,000 75,000 80,000 85,000 90,000 R (km) 0.7 0.6 m‡2 **Optical Depth** m=3 0.5 0.4 m=3 m=3 0.3 m=4 m=2 0.2 8:8 Mar La 80 82 84 86 88 Radius (1000 km)

Marley and Porco also predicted additional resonances with m=5,6,7,8 and 9 in this region, but a comprehensive search has only uncovered m=10 thus far

Something is odd about the excitation spectrum of Saturn's normal modes

m=4

m=3

m=3

m=3

82

0.7 0.6

0.5

0.4

0.3

0.2

8:0

80

Optical Depth

Radius (1000 km)

We have also found five waves with pattern speeds between 805⁰/day and 835⁰/day , which are close to Saturn's rotation rate

Finally, we found a very strange, "backwards" wave that appears to be an m=1 wave with a pattern speed equal to twice the local orbital speed

The group velocity of density waves is $v_g = \pi G \sigma / \kappa = 0.26 \text{ km/year}(\sigma / 1g / \text{cm}^2)$ So the resonance is moving faster than the wave!

Normally, the wavelength of the density wave declines as it propagates away from the resonance

If the resonance location moves, the wave becomes distorted res Vg Vg time

If the resonance location moves faster than the wave can propagate, the wave can be turned inside out.

Summary:

The C ring data suggests Saturn's oscillations behave in unexpected ways

Oscillation Modes in Saturn are split

The m=10 mode is strongly excited

Something inside Saturn is changing

Stay Tuned!

Supplemental Material

Previous calculations had shown that some of these resonances should lie in the C ring.

Organized motions can be produced by any periodic perturbing force

Orbit period of ring particle $\approx \frac{m-1}{m}x$ Rotation period of perturbing force

Synodic period of the periodic force ≈ m x Epicyclic period of ring particle

Frame co-rotating with the moon

Frame co-rotating with the perturbing force

At this resonance, Mimas' periodic perturbations produce patterns by organizing the radial motions of the ring particles

Orbit period of ring particle $\approx \frac{7}{8}$ x Orbital period of moon

Time between ring-moon conjunctions ≈ 8 x Epicyclic period of ring particle

Frame co-rotating with the moon

What happens at a (first order) Lindblad resonance?

Orbit period of ring particle $\approx \frac{m-1}{m} \times \text{Orbital period of moon}$

m x Epicyclic period of ring particle \approx Period between ring-moon conjunctions

Frame co-rotating with the moon (assuming m=8) Given the occultation times and longitudes, we can predict what $\delta \phi$ we should observe if the pattern has a given number of arms, and compare that to the observed value of $\delta \phi$

The internal structure of the giant planets can hold clues to how the solar system formed.

What happens at a (first order) Lindblad resonance?

Orbit period of ring particle $\approx \frac{m-1}{m} \times \text{Orbital period of moon}$

m x Epicyclic period of ring particle \approx Period between ring-moon conjunctions

Inertial frame

Frame co-rotating with the moon (assuming m=6) The A-ring spiral wave patterns are generated by Lindblad resonances

The strongest patterns are found at first-order resonances: Moon's orbit period $\approx m/(m-1) \times Ring$ -particle's orbit period

•

Ring Particle Orbital Period= 5/6 Janus' Orbital Period

In dense rings, the resonant perturbations drive spiral waves through the ring