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RESEARCH FOCUS AND SIGNIFICANCE

Enceladus Phoebe

Kuiper-belt Asteroid and
objects comets

lapetus

Outer planet moons

Icy objects contain information about the early Solar
system and the development of potentially habitable
environments.



IAPETUS - TWO PUZZLES
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A VERY ANCIENT FEATURES:
IAPETUS' EQUATORIAL RIDGE

Length ~ 4680 km
Width ~ 100 km

Height up to 20 km
Very steep flanks, slope angle partly >30° !

Age ~ same as surroundings (4.4 - 4.5 By)



Model
Requirements

e Dissipative Interior
sufficient for lapetus’
models to despin in
less than the age of
the Solar System

Stiff lithosphere to
retain the 17-h geoid
and other topography




Approach

Simultaneous Solution of a
System of Models

e Dynamical
e Thermal

* Rheological

# Lithospheric and Geological

AS A FUNCTION OF TIME
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RAW EGG

Initial impulse is of similar magnitude

The raw egg slows down faster than
the cooked one!

Link between
viscoelastic
structure and
dynamics

COOKED EGG



Both eggs are disrupted from spinning
in a similar way

The cooked egg stops immediately
while the raw one resumes spinning!




ROTATION PERIOD FOR RESONANCE
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Pressure at 20 km Depth (MPa)
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TEMPERATURE AT THE END OF ACCRETION

Maximum temperature is reached at about 20 km depth (after the model by Squyres et al. 1988)
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MODELING MEDIUM-SIZED ICY SATELLITES

e Medium-sized satellites accrete cold and porous

e Water ice at 80 K is one of the most conductive planetary
minerals

e The time scale to warm the interior from long-lived
radionuclides decay is longer than the cooling time scale

e The conditions for tidal heating to become a significant heat
source in cold objects are not understood

There is an obvious discrepancy between models and
observations



APPROACH

Initial Conditions

* Presence of SLRS

e Formation time: 1.5 to 10 My after CAls
* Presence of ammonia
 Planetesimals temperature

* |nsulating regolith layer

Other sources

e Evolution of the surface temperature
e Silicate hydration heat

 Long-lived radionuclides

e Gravitational energy

e Tidal dissipation (if enabled)
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A REAL MYSTERY
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IAPETUS

Classical Model, after Ellsworth and Schubert (1983)
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26A|

e First identified in Calcium-Aluminum Inclusions
e Initial 2°Al/?’Al ~ 5-6.5 x 10~ (Pappanastassiou, Wasserburg, Lee)
e Half-life ~ 0.717 My

Formation Time (My) after CAI Formation
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ROLE OF SLRS IN THERMAL EVOLUTION

 Play arole only in early evolution of the satellite
early differentiation and geological activity)

e internal temperatures high enough for
hydration (and consequent volume change)

e internal temperatures high enough for tidal
tion to start

e internal temperatures high enough for
ant porosity decrease



Porous Model, t, > 6 My after CAls

i e 1 i(e i
Time (My)

.

T Gy SO0 Qi) Sy B0 F L

Temperature (K)

e

1 102 108

Time (My)
B |
0.2 0.4

Porosity




Porous Model|, t,

2.5 My after CAls
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GEOLOGICAL CONSEQUENCES
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26AL IS NOT A FREE PARAMETER
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Planet Formation Timescales

Giant planets Models
e Gravitational instability — e.g. Boss

e Core nucleated accretion — currently favored

e Time scale problem — analogy to terrestrial accretion
yields O(108 yrs) — too long compared with stellar

evidence

* “runaway growth” and Oligarchic growth models can
result in <107 yr times scales (e.g. Lissauer, 1987)



Planet Formation Timescales

Evidence from stellar protoplanetary disks
e Gas loss <107 yr (Meyer et al., 2007)

 Spitzer studies for ~ solar mass stars show that
stars with 3-5 x 10° yr ages lack indications of
primordial planet-forming disks (e.g. Carpenter
et al., 2006; Dahm and Hillenbrand 2007: Currie
and Kenyon, 2008)



Viillion Year Old Planets?!

“A stellar prodigy has been spotted about 450 light-
years away in a system called UX Tau A by NASA's
Spitzer Space Telescope. Astronomers suspect this
system's central Sun-like star, which is just one million
years old, may already be surrounded by young planets.
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THE FUTURE: LABORATORY-BASED MODELS

e Current models are not supported by laboratory
measurements

* VViscoelastic response models rely on the Maxwell
model, known to be applicable for a very limited
range of conditions in satellites

Mechanical Measurements in Cryogenic Conditions at
Low Frequencies and Stresses are Challenging



Maxwell Model
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LABORATORY WORK
NEW EXPERIMENTAL FACILITIES AT JPL

First and only system able to simulate
tidal dissipation under realistic
satellite conditions



CAPABILITY OF NEW SYSTEM
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WHERE DO WE START?

e Monocrystalline ice in order to identify dislocation-driven
anelasticity

e Dislocation creep is thought to drive anelasticity in many
conditions: warm temperatures, large grain size, high stress (cf.

terrestrial rocks)

Baker (2003)




LABORATORY MEASUREMENTS
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e Results have demonstrated that existing models of dissipation need to be revised
using our laboratory data
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FUTURE CASSINI OBSERVATIONS WILL HELP
CONSTRAIN THE FORMATION TIMESCALE
FOR THE SATURNIAN SYSTEM



Density < 1200 kg/m3 Density > 1200 kg/m3
MIMAS | ENCELADUS

| J, (S pole)=5.2-7.8x 103
TETHYS DIONE

| ), =1.05-2.12 x 103

IAPETUS ! RHEA

SLRS required for Orbital Evolution Consistent
dynamical evolution with SLRS or LLRS only



POTENTIAL OBSERVATIONS

Geology: Ongoing and Past Geologic Activity (e.g.,
Enceladus)

Craters shape (porosity, thermal gradient)
Surface Age: Crater Counting and resurfacing
Equilibrium of the Shape

Internal Structure: (e.g., for Rhea)

Dynamical Evolution (e.g., lapetus)

Surface composition (especially in craters, e.qg.,
Enceladus)
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