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ABSTRACT

Aims. Astronomical archives contain vast quantities of unexplored data that potentially harbour rare and scientifically valuable cosmic
phenomena. We leverage new semi-supervised methods to extract such objects from the Hubble Legacy Archive.
Methods. We have systematically searched approximately 100 million image cutouts from the entire Hubble Legacy Archive using the
recently developed AnomalyMatchmethod, which combines semi-supervised and active learning techniques for the efficient detection
of astrophysical anomalies. This comprehensive search rapidly uncovered a multitude of astrophysical anomalies presented here that
significantly expand the inventory of known rare objects.
Results. Among our discoveries are 86 new candidate gravitational lenses, 18 jellyfish galaxies, and 417 mergers or interacting galax-
ies. The efficiency and accuracy of our iterative detection strategy allows us to trawl the complete archive within just 2–3 days,
highlighting its potential for large-scale astronomical surveys.
Conclusions. We present a detailed overview of these newly identified objects, discuss their astrophysical significance, and demon-
strate the considerable potential of AnomalyMatch to efficiently explore extensive astronomical datasets, including, for example, the
upcoming Euclid data releases.
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1. Introduction

With the launch of Euclid (Euclid Collaboration 2025b), the
beginning of operations of the Vera C. Rubin observatory (Ivezić
et al. 2019), and the construction of the Nancy Grace Roman
Space Telescope (Mosby et al. 2020), the size of astronomi-
cal datasets is growing rapidly. These observatories will survey
a large fraction of the sky in an agnostic way, leading to the
potential discovery of a large number of new objects of astro-
physical interest allowing us to expand our catalogues of rare
galaxy morphology types, including cosmological effects like
gravitational lenses or galaxies undergoing the effects of dense
environments.

Rare objects, often termed astrophysical anomalies, are par-
ticularly informative for improving our understanding of galaxy
evolution and cosmology. For example, strong lensing – a grav-
itational effect of chance alignment of galaxies – allows precise
testing of the gravitational potential of the foreground galaxy, as
well as the in depth study of the background galaxy from mag-
nification effects (Shajib et al. 2024). When observed around a
galaxy cluster, such lensing is an excellent test of cosmology,
allowing us to probe their dark matter halo. Other examples
include jellyfish galaxies (Poggianti et al. 2016, 2017; Durret
et al. 2021), galaxy mergers (Pearson et al. 2019; Ackermann
et al. 2018; Wei et al. 2024), edge-on protoplanetary disks
(Berghea et al. 2024), and Voorwerps (Lintott et al. 2009).

What many of these rare systems have in common are their
methods of discovery. Often they are found by experts ‘manu-
ally’ exploring their data, and detecting odd morphologies or
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serendipitously finding objects of interest (Pearce-Casey et al.
2025; Acevedo Barroso et al. 2025). Another common approach
leverages the contribution of citizen scientists. Using plat-
forms such as Zooniverse from the Galaxy Zoo collaboration
(Lintott et al. 2008), volunteers are able to mark any galaxies
with anomalous morphologies as ‘odd’.

However, these two searching strategies are time consum-
ing and difficult to scale to large datasets. Additionally, they
suffer particularly from the problem of subjectivity and the dif-
ficulty in defining what an ‘odd’ morphology is. To address this,
the Galaxy Zoo: Weird and Wonderful project (Mantha et al.
2024) formalised the distinction between ‘interesting’ and ‘non-
interesting’ anomalous galaxies in its classification scheme. Yet,
volunteers may not be able to identify an anomaly as reliably as
an expert in the field of extragalactic astrophysics.

By their nature, anomalies are rare and difficult to find.
Hence, applying commonly used machine learning techniques
– such as supervised convolutional neural networks – is diffi-
cult due to limited training data. Samples containing the wanted
anomaly are often small, and it is difficult to train models on
limited training data for a highly imbalanced search space with
mostly “uninteresting” data.

Approaches such as Astronomaly (Lochner & Bassett 2021)
aim to resolve this problem. Rather than training to find individ-
ual types of anomalies, they utilise a combination of isolation
forests (Liu et al. 2008) or local outlier factor (Breunig et al.
2000) with active learning to identify anomalies specifically
sought by a user. In further study, this can be combined with fea-
ture spaces produced by machine learning models (e.g Zoobot;
Walmsley et al. 2022, 2023) to identify further examples of
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an anomaly. This is effectively done with the ulisse tool
(Doorenbos et al. 2022), where these feature spaces can be anal-
ysed such that objects of similar morphologies appear close
together and can be extracted from areas of interest.

Related works in the area often use unsupervised learning
to search for astrophysical anomalies. Unsupervised methods in
this context leverage unlabelled data and its data structure to cre-
ate groups of similar objects expecting anomalies to cluster or
fall outside clusters. Such an approach was successfully applied
in Stein et al. (2022). In this work, a self-supervised machine
learning method was used to mine the entire Dark Energy
Spectroscopic Instrument survey Data Release 9 for strong grav-
itational lenses. Their self-supervised method created an output
representation space which was linked to the morphology of the
objects trained upon. Once this feature space was created, the
representation vector of a single image of a gravitational lens
(output by the same model) was then used to conduct a similar-
ity search through 76 million images, identifying 1192 candidate
gravitational lenses with excellent computational efficiency.

In this work, we utilise a different approach. We frame
anomaly detection as an imbalanced binary classification prob-
lem. This is not a fundamentally different task as anomaly
detection inherently involves distinguishing rare instances from
common ones, but it allows us to leverage semi-supervised learn-
ing techniques specifically designed for extreme class imbal-
ance, enabling effective learning from minimal labelled anomaly
examples. Our method utilises semi-supervised learning (SSL)
techniques such as pseudo-labelling (Lee 2013) and consistency
regularisation (Bachman et al. 2014) to make binary classifica-
tions on an anomalous or nominal source. Additionally, we use
active learning, where experts iteratively validate and label pre-
dictions of the top ranking scored images. This hybrid approach
offers key advantages: it requires very few initial labels (even
fewer than ten anomalies), enables expert validation through-
out the process, and effectively utilises both unlabelled data
and expert knowledge to progressively improve detection perfor-
mance.

Our approach, named AnomalyMatch, is fully described in
the companion paper (Gómez et al. 2025). There, we conduct
thorough benchmarking and validation of the approach on estab-
lished datasets such as mini-ImageNet (Vinyals et al. 2016)
and GalaxyMNIST (Walmsley et al. 2022). In parallel to the
development, we actively applied this approach to searching for
anomalies in the entire Hubble Space Telescope Legacy Archive1

(HLA).
We used the European Space Agency’s (ESA) science data

platform ESA Datalabs2 (Navarro et al. 2024) to conduct this
search. In initial testing, we attempted to identify edge-on pro-
toplanetary disks. These systems form very distinct ‘hamburger’
or ‘butterfly’ shapes which are easily detected by image classi-
fication algorithms. However, only very few of them are known
in the literature. As we developed and updated the algorithm,
we expanded our search via active learning and marking other
objects of astrophysical interest. This was due to multiple fac-
tors. First, was a limitation of the data we are using. We search
primarily in a previously created dataset of F814W filter HST
sources observed with the Advanced Camera for Surveys/Wide
Field Channel (ACS/WFC; hereafter only ACS). In this dataset,
the number of edge-on protoplanetary disks is limited as they are
often observed at other wavelengths, in the Wide-Field Planetary
Camera-2 (WFPC2) or are very difficult to resolve in HST data

1 HLA: https://hla.stsci.edu/
2 ESA Datalabs: https://datalabs.esa.int/

(e.g. Burrows et al. 1996; Krist et al. 1998; Stapelfeldt et al. 2003;
Ricci et al. 2008; Angelo et al. 2023). The second was that our
algorithm began to detect numerous other objects of interest that
we wished to pursue. These included lensed quasars, mergers,
and gravitational lenses.

In this work, we discuss and display the wealth of
new objects found in the development and application of
AnomalyMatch and discuss the implications for our model.
Overall, we report 1176 newly found anomalies which span 19
different classes. These include galaxy mergers, gravitational
lenses and arcs, edge-on protoplanetary disks, and a host of rare
galaxy morphologies.

This paper is laid out as follows. Section 2 describes the
imaging data we use from the HLA, its creation, its poten-
tial limitations and the resultant training set we use. We briefly
describe AnomalyMatch in Section 3, but primarily focus on our
methods of anomaly extraction from the HLA and of search-
ing the literature. We also briefly describe ESA Datalabs and
the efficiency of our model searching through our dataset. Sec-
tions 4 and 5 show the anomalies we find through the HLA,
we discuss their representation in the literature and the new
objects that we have discovered. Finally, Section 6 concludes
this paper and we describe our plan for future implementation of
AnomalyMatch.

For an excellent description of an anomaly, see the introduc-
tion of Ruff et al. (2020). In this work, we define an astrophysical
anomaly (or simply anomaly) to be an astrophysical object that
shows morphological characteristics which deviate notably from
the general population.
Our contributions are as follows:

– We have conducted the first comprehensive systematic
anomaly search of the entire HLA, comprising approx-
imately 100 million image cutouts, using the recently
developed semi-supervised and active learning method
AnomalyMatch.

– We present a substantial catalogue of newly identified astro-
physical anomalies, significantly expanding the known pop-
ulations of rare cosmic phenomena: 417 previously unknown
galaxy mergers, 138 candidate gravitational lenses, 18 jelly-
fish galaxies, and 2 collisional ring galaxies.

– We have demonstrated the exceptional efficiency and accu-
racy of our approach, processing the entire HLA dataset
within just 2–3 days, highlighting its strong potential for
rapid anomaly detection in upcoming large-scale astronomi-
cal surveys such as Euclid.

2. Data and training set

In this work, we used the source cutouts created in O’Ryan et al.
(2023). In that work, we searched the HLA for interacting and
merging galaxies, but created cutouts of every extended source
within the archive. In this section, we briefly describe the cre-
ation process and comment on its limitations in finding other
anomalous objects in the HLA.

2.1. Source cutouts of the HLA

The HLA contains all Hubble Space Telescope (HST) observa-
tions. These observations were obtained across many different
dates, instruments, and filters. Therefore, to create a consistent
dataset, O’Ryan et al. (2023) elected to only use observations
from the Advanced Camera for Surveys (ACS) Wide Field Chan-
nel with the F814W filter. They also only used observations at
Calibration Level 3 – these are science-ready mosaics from the
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general reduction pipeline. The source of these was the Hubble
Advanced Product dataset. This subsection of the HLA specif-
ically contains curated HST science-ready mosaics from across
the sky.

With these selections, ∼10k observations were available.
While these could be queried from well known Table Access
Protocol services via a host like the Mikulski Archive for Space
Telescopes this would lead to downloading terabytes of data.
Therefore, the science platform ESA Datalabs was employed.
This platform provides a direct link to various science archives
and a Jupyter Notebook environment to give users direct access
to HST observations. The HST data are stored in specific data
volumes dependent on the instrument of observation. The level
3 F814W mosaics can be easily accessed with no downloading
required.

Rather than conducting computationally expensive source
extraction across such a large set of observations, O’Ryan et al.
(2023) employed the Hubble Source Catalogue (HSC; Whitmore
et al. 2016). This is a large, publicly available catalogue.
Whitmore et al. (2016) applied SourceExtractor (Bertin &
Arnouts 1996) across each observation in the HLA. Selecting
only extended sources provided 99.6 million source cutouts in
the image dataset.

For each cutout, a fixed size of 150×150 pixels was used
(7.5′′ × 7.5′′), with a LinearStretch and ZScaleInterval
from Astropy (Astropy Collaboration 2013; Astropy
Collaboration 2018, 2022). Each image was stored as a
one-channel greyscale JPEG image. While this does lead to a
loss of quality of the image, it allows for more efficient storage.
The image creation process was prioritised such that the mor-
phological features of each galaxy were visible. This approach,
however, was not optimised to find low surface brightness
features, potentially impacting our detection of anomalies such
as jellyfish galaxies.

Upon the creation of the dataset in O’Ryan et al. (2023),
it was found that many extended sources were shredded. This
could result in an extended source appearing in the dataset mul-
tiple times, but from different centring points. The number of
duplicates of extended sources depended on the source size and,
therefore, the redshift of the source. The largest sources, we
found, could be duplicated up to five times. These large sources
would often be large enough to fill the 150 × 150 pixel source
cutouts, and therefore, would show little detail. These were then
given a low anomaly score by AnomalyMatch.

Smaller sources, from z > 0.2, were less affected by shred-
ding and duplication. In a minority of cases, these could be
shredded up to three times. Whitmore et al. (2016) did pro-
vide a MatchID, which attempted de-duplication of the HSC,
but O’Ryan et al. (2023) opted to conduct their own de-
duplication after classification. This was motivated by preventing
the removal of multiple galaxies that were involved in interac-
tions and preserving the identification of merging galaxies with
multiple cores. We conduct de-duplication of the data after the
identification of anomalies. When we create our training set,
we ensure there are no duplicate sources, or multiple shredded
cutouts, of the source.

While only extended sources were selected in the HSC, many
dense star fields – such as those in deep ACS observations
of Andromeda and the Magellanic Clouds or globular clusters
– were also flagged as extended. This occurred because the
individual point sources within these regions were so densely
packed that they were blended into a single extended source.
This is a specific example of an image artifact which would make
other methods of anomaly detection difficult. We identify this in

4000889752623 4001116569188 6000283692266

Fig. 1. Initial three images labelled anomaly used to train
AnomalyMatch. These three images containing edge-on protoplane-
tary disks which we initially aimed to search additional instances of
in the HLA. During active learning, this set was expanded to include
sources with odd morphologies like mergers, lenses, and jellyfish galax-
ies which were serendipitously discovered. Titles are the Source IDs of
the objects found in O’Ryan et al. (2023).

the active learning step of training our model, and ensure that
AnomalyMatch gives these a low anomaly score.

For ease of storage, the 99.6 million cutouts were are stored
in ∼1000 HDF5 files, containing ∼100 000 images each. By
using this storage format, the images can be accessed and read to
the memory efficiently.

2.2. Training set

Our initial goal was to find more examples of edge-on pro-
toplanetary disks. Therefore, we started our search with three
examples of these anomalies, a set 128 labelled nominal data
and ∼99.6 million unlabelled images. The nominal imaging was
selected by visual inspection of randomly selected images from
the full dataset. We selected images of individual galaxies, star
fields, and any imaging artifacts that appeared in the sample.
Figure 1 shows the three anomalies we initially used to train
AnomalyMatch. However, upon conducting active learning, we
found that the odd morphology of these systems led to the dis-
covery of other objects of interest also being given high anomaly
scores. With these new objects, we began to pivot our anomaly
search to other interesting objects which were also more likely to
appear in F814W data.

From this attempt to search for edge-on protoplanetary disks,
we had constructed a second catalogue of interesting objects
through active learning. The anomalies at this stage were clas-
sified based on their morphology alone, rather than by searching
the literature for specific kinds of objects. In total, the training
set consisted of 1400 images: 375 anomalies and 1025 nom-
inal images. We continued building the nominal labelled set
during active learning, adding to it substantially to represent fur-
ther un-interesting morphologies and unaccounted artifacts that
were scored highly. The anomalies were primarily mergers (178);
galaxies which are undergoing close interactions and coalescing.
However, we also uncovered many gravitational lenses that were
incorporated into the training set (63). Figure 2 shows a sub-
set of the training set that was built during the development of
AnomalyMatch.

Increasing the size of the training set and generalising it led
to the identification of many different sub-classes of anomalies.
However, we were unable to identify new edge-on protoplanetary
disks that were not already present in the literature. First, this
was due to the known ones becoming a subset of our training
set as we add other types of anomalies to it. Secondly, was a
limitation of the data we were searching, as observations of edge-
on protoplanetary disks in the F814W are rare in the literature.
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Fig. 2. Fifty examples of the final training set used in applying AnomalyMatch to the HLA. The top two rows, highlighted in red, show ten examples
of the anomaly class. These are made up of mergers, lenses, edge-on proto-planetary disks as well as some galaxies showing odd morphology. The
remaining 40 images are then examples of ‘nominal’ data. This is primarily isolated galaxies, star fields, and artifacts.
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3. Methods

3.1. AnomalyMatch

AnomalyMatch is an approach combining active learning and
SSL that we have developed and optimised for the purpose of
identifying anomalies in large datasets. It is fully described,
benchmarked, and validated in the companion paper Gómez
et al. (2025). We provide a brief description of it here.
AnomalyMatch is based on the FixMatch approach (Sohn

et al. 2020) as iterated on in MSMatch by Gómez & Meoni
(2021). The latter adopted an EfficientNet backbone, support
for multispectral data and has demonstrated high accuracy
using limited labelled samples through consistency regulari-
sation and pseudo-labelling, effectively handling challenging
scenarios such as remote sensing with multispectral data.

Building upon these principles, AnomalyMatch explicitly
frames anomaly detection as a binary classification problem,
distinguishing rare anomalies from abundant nominal data,
efficiently leveraging a minimal number of labelled anoma-
lies alongside extensive unlabelled data. To effectively address
severe class imbalance, the supervised component employs
binary cross-entropy loss combined with oversampling of the
minority anomaly class, ensuring robust learning from sparse
labelled samples.

The unsupervised component applies weak augmentations to
generate high-confidence pseudo-labels for unlabelled images,
enforcing prediction consistency with strongly augmented ver-
sions of these images to exploit intrinsic dataset structure.
Crucially, AnomalyMatch integrates an active learning approach
via an interactive user interface (UI), enabling iterative expert
validation and labelling of high-confidence anomaly candidates,
progressively refining the model and significantly enhancing
anomaly detection performance on large datasets with few
known anomalies.

This divide between large quantities of unlabelled data and
small samples of labelled data is often the case in astronomy.
This is especially true for anomalies, where the number of known
examples of an object in certain datasets can be less than ten.
Therefore, AnomalyMatch provides a method to expand the
catalogues where examples of specific objects are very few.
AnomalyMatch improved on MSMatch by incorporating an

active learning loop. The user provides AnomalyMatch with a
set of labelled and unlabelled data and then conducts an initial
round of training. Predictions are then made on the unlabelled
data and an ‘anomaly score’ is given to each image based on
the model’s classification. The images are ranked by this score,
and then shown to the user in an easy to use UI. An example
of this is shown in Gómez et al. (2025). The user can then pro-
vide additional labels for consecutive training on a dataset that
is progressively expanded and refined. This process of active
learning is where the the bulk of our initial training set has
been collected. Figure 3 shows the full AnomalyMatch work-
flow. The AnomalyMatch code will be published on GitHub
pending completion of an ESA open-source licensing process.3

3.2. Anomaly identification

To identify anomalies, the only initial information we have is
their morphology. During active learning and inference over the
HLA, there was no direct access to further ancillary data. The
underlying distribution of anomaly score is highly skewed to
nominal images – meaning the model is very confident that an
3 AnomalyMatch: https://github.com/esa/AnomalyMatch

object is not anomalous. Given the strong class imbalance and
training on only a limited subset of data, model scores were not
calibrated and they are not probabilities. We do not apply a cut
to this score but investigate their ranked order.

After training on all labelled data and a subset of the unla-
belled data, we visually inspect the 5000 sources with the highest
predicted anomaly scores of the entire HLA. Based on either the
morphology of the galaxy or the object in the image, we are able
to make an initial estimation of the kind of anomaly we find.
However, to confirm or reject this, we must turn to the literature.
We made use primarily of SIMBAD4 and the ESASky platform5.
SIMBAD is an excellent tool to programmatically check if the
anomalies we found have any associated papers. We conducted a
cone search about the coordinates of each anomaly with a radius
of 3′′. We then checked if any source within this radius had was
associated to any work at the time of writing. This could then be
followed up quickly and efficiently using ESASky.

In many cases, no literature was associated with the anoma-
lies we discovered. For these objects, we determined a classi-
fication based solely on the morphology of the system. This
classification would be informed by comparing to others we
had made where literature was available. Below, we break down
our classification scheme for defining different categories of
anomalies. Example images for each class are shown in Figure 7
(Section 4).

3.2.1. Galaxy mergers

Galaxy interaction and merging is a well studied phenomenon,
with many different algorithms developed for detecting them.
Mergers are identifiable as two or more galaxies lying at approx-
imately the same redshift and exhibit signs of a gravitational
effect upon one another. Samples are often plagued by incom-
pleteness or contamination from galaxy pairs which are only
close together by projection (e.g. discussions in Ackermann et al.
2018; Pearson et al. 2019; Margalef-Bentabol et al. 2024). Dis-
tinguishing between physically interacting galaxy pairs and close
pairs is challenging without ancillary data such as velocity or
redshift information. Samples of these objects typically include
a few thousand systems (Darg et al. 2010; Pearson et al. 2022).

While there are many stages to a galaxy merger, going from
interacting pairs to coalescence, we define any kind of interact-
ing galaxy system as a merger. To identify mergers, we rely on
the existence of tidal features between the two systems. These
features form through the distortion of the galactic disks as the
interaction progresses. This makes our approach primarily sensi-
tive to late-stage mergers, where the systems have already passed
each other, resulting in a highly distorted galactic disk with one
or more cores visible within it.

3.2.2. Overlapping galaxies

Overlapping, or ‘backlit’, galaxies are systems that appear merg-
ing in the 2D projection but are at large 3D separations in the
plane of the sky. The galaxies show little morphological distor-
tion, with their disks overlapping. This distinguishes them from
‘close pair’ contamination in our merging sample, where the two
galaxies are close together in the projection of the sky but not
overlapping. Samples of such systems are often small, with the
largest being 2000 from Galaxy Zoo 2 (Keel et al. 2013). They

4 https://simbad.u-strasbg.fr/simbad/
5 https://sky.esa.int/esasky/
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Fig. 3. Workflow when using AnomalyMatch. We leverage both labelled and unlabelled data from a user dataset to train an EfficientNet architecture
and include an active learning loop. Here, the unlabelled data is ranked by anomaly score, the user can extract more examples of the object they
are searching for and add them to their training data. Once the desired model metrics are achieved, the model can be saved and then run across all
images in their dataset.

are primarily used in the study of dust attenuation independent
of dust temperature and the substructure of galaxies.

3.2.3. Gravitational lenses

Gravitational lenses are the prime example of anomalies in the
literature, with many recent works searching for them. They are
the product of chance alignment between two galactic systems.
The background galaxy’s light path is altered in the foreground
galaxy’s gravitational potential and smeared into an arc around
the foreground galaxy. We can observe these gravitational lenses
(or, rings if the alignment is complete) around the foreground
galaxy, and reconstruct the image of the background galaxy in
higher detail than observing it normally. This is due to the lens-
ing having a magnification effect on the background galaxys’
light.

The most recent works searching for gravitational lenses used
Euclid data and have employed both expert labelling (Pearce-
Casey et al. 2025) and machine learning techniques (Euclid
Collaboration 2025a). We classify a gravitational lens about an
object when we observe these structures around the galaxies in
our sample.

3.2.4. Gravitational arcs

Gravitational arcs and lenses are results of the same light-
bending phenomenon. However, in this work, we distinguish

between a strong lens about a galaxy and a strong arc about
a galaxy cluster. In our dataset, gravitational arcs are found in
source cutouts themselves, rather than closely wrapped around a
galaxy within the image. Famous examples of gravitational arcs
include the Cosmic Snake (Cava et al. 2018) and those used in
dedicated galaxy cluster lensing searches (Postman et al. 2012;
Coe et al. 2019).

3.2.5. Lensed quasars

Strongly lensed quasars (often in an Einstein Cross configura-
tion) are the final type of gravitational lensing effect that we
classify among our anomalies. These occur when there is the
chance alignment between a foreground galaxy and a back-
ground highly luminescent quasar, forming distinctive and bright
point sources around the foreground galaxy. Very few of these
objects are known (<200), with the discovery of a new system
often leading to a publication (e.g. Agnello et al. 2018; Bettoni
et al. 2019; Tubín-Arenas et al. 2023; Lemon et al. 2023).

3.2.6. Jellyfish galaxies

Jellyfish galaxies are a unique galaxy type found in dense galaxy
cluster environments. They are galaxies with high internal gas
fractions which are undergoing intense ram pressure stripping
(RPS). The dense intracluster medium acts on the internal gas of
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the galaxy and strips it into long tendrils in the opposite direc-
tion of travel. A distinctive bow-shock forms in the direction of
travel of the galaxy, as the gas within is compressed and star for-
mation is likely enhanced (Rohr et al. 2023; Zhu et al. 2024).
Across the literature, samples of these objects rarely exceed 200
systems, although in recent works they are beginning to increase
(Poggianti et al. 2017; Roberts et al. 2021; George et al. 2024;
Foster et al. 2025).

As we classify our anomalies, we find many galaxies which
show signs of RPS, for instance spiral galaxies with large gas
reservoirs around them, or long tails with no obvious companion
to have created it by interaction or merging. We, therefore, only
identify jellyfish galaxies if they show the distinctive bow shock
and are located in a cluster environment.

3.2.7. Clumpy galaxies

Clumpy galaxies, owing their name to the presence of large and
luminous star-forming clumps within them, are gas rich systems
which often reside at 1 < z < 3 (Bournaud et al. 2008; Shibuya
et al. 2016). Samples typically range from 100 to 1000 systems
(Guo et al. 2015; Adams et al. 2022). The clumps can easily
be mistaken for a second core within the galactic disk leading
to possible misclassification as a merger. We ensure that when
making either the merger or clumpy classification, we consider
for any morphological disturbance to the galactic disk. Also, the
existence of more than one secondary core in the galaxy is likely
an indication that it is a clumpy galaxy rather than a merger.

3.2.8. Active galactic nuclei

Active galactic nuclei (AGNs) are the central supermassive black
holes of galaxies which are undergoing accretion and growth.
They are usually classified from spectral information using diag-
nostic measurements to identify them based on their emission
(e.g. Kauffmann et al. 2003). Samples of AGNs obtained this
way are usually large – a few thousand systems. We, however, do
not have access to this information and only use the morphology
of the system. In rare cases, an AGN can be so luminous that
the centre of the galaxy detected as a bright point source. Upon
visual inspection, systems hosting a point source at their galactic
centre are classified as hosting an AGN.

3.2.9. Ring and collisional ring galaxies

We specify two different kinds of ringed galaxies in our anomaly
classification scheme: ‘normal’ and collisional ring galaxies.
Normal ring galaxies are systems that host a large, empty gap
in the galactic disks while a large ring is formed on the outskirts.
The formation of such rings is an active area of research. Sam-
ples of such rings typically contain several hundred objects (Buta
1995; Comerón et al. 2014; Timmis & Shamir 2017).

Collisional rings are formed in galaxy mergers with spe-
cific orientations of the impact, when the two galaxies go
directly through each other meaning sample sizes are lim-
ited. The interaction causes a shockwave to move through the
disk incurring a burst of star formation (Appleton & Struck-
Marcell 1996; Mapelli et al. 2008). We distinguish collisional
ring galaxies from ring galaxies as they are far more lumi-
nous. They also show disruption to their disks, and the ring
itself can be bent or host features. The existence of a secondary
galaxy nearby is also accounted for in making this morphology
classification.

3.2.10. Edge-on protoplanetary disks

As stated in Section 3, we originally deployed AnomalyMatch
to search for edge-on protoplanetary disks. These systems are
exceptionally rare, with samples not exceeding 25 objects across
the literature (Villenave et al. 2020). They exhibit a single, dark
dust lane across their centres with a distinctive butterfly shape
extending in perpendicular directions. They often host a jet,
which is also perpendicular to the dust lane. These objects, when
known, are very well studied. We, therefore, use this distinctive
morphology to identify them in our sample of anomalies. We
also closely crossmatch potential candidates with the literature.

3.2.11. Galaxies hosting a jet

Galaxies hosting a jet are not uncommon in the literature. Often,
in the process of supermassive blackhole growth, long jets will
form on either side of the galaxy from the galactic core. While
common in the radio or X-ray bands, finding these at optical
wavelengths is rare. The most famous example of this is the
jet of M87 (Biretta et al. 1999), which has been extensively
studied with HST. Optical jets have been identified at various
redshifts, typically in samples on the order of tens, and are often
used to study properties of AGNs (e.g. Blandford et al. 2019;
Kravchenko et al. 2025).

3.2.12. High redshift galaxies

During the creation of the images in O’Ryan et al. (2023), the
redshift distribution of the underlying sources was unknown.
Therefore, there are many examples in our dataset of sources
detected with very low signal-to-noise. In these systems, the
morphology of the galaxy can be difficult to distinguish against
the background.

When these low signal-to-noise systems are marked as
anomalous by AnomalyMatch, we broadly label them as high-
redshift galaxies, without further classification into anomaly
subtypes. Some of these are simply described as ‘high-redshift
galaxies’ in the literature as well.

3.2.13. Odd galaxies and unknown galaxies

Finally, we introduce two general classifications that we apply
to anomalies that do not easily fit above categories. We label
as ‘Odd’ galaxies those which have been scored highly because
they host morphological abnormalities or are highly irregular,
so they cannot be classified as nominal galaxies, but do not fit
our other criteria to be classified as a specific anomaly. Many
of the galaxies that meet this definition are located in clusters.
In such environments, effects like RPS, harassment and merging
lead to major changes in their morphology. However, they do
not host a bow shock to be a jellyfish galaxy and they are not
in the process of interacting or merging to be classified as such.
These systems also have no available literature to aid in their
classification.

The final class is ‘Unknown’ galaxies. These galaxies have
a morphology which completely defies classification based on
morphology. In many cases, they may not be galaxies. They have
no associated literature to aid in their classification. Therefore,
we leave these as unknown objects that could potentially serve as
new anomalies for further sub-classification, but we are unable
to make such a classification in this work.
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Fig. 4. Exemplary anomaly scores on a random subsample of the data. Notably, artefacts are clearly isolated and increasing scores correspond well
with increasingly interesting data. The model shows robustness against varying brightness, image noise or differing sizes of objects in the images.

3.3. Anomaly score and SHAP distributions

Upon training AnomalyMatch, we are able to test the model
across subsets of our unlabelled data. To demonstrate the perfor-
mance and output of AnomalyMatch, we apply it to five random
of the stored 1000 HDF5 files. AnomalyMatch gives each image
a score between 0 and 1 – the anomaly score. Figure 4 shows
representative examples of different anomaly scores from this
distribution. This clearly shows that many of the images in the
HLA sample are of star fields, which are ranked very low in
anomaly score. As we increase the score, more and more galaxies
with ordinary morphologies are revealed.

Figure 5 shows the resultant distribution of anomaly scores
across all five HDF5 files (∼500 000 sources). The majority of
our sources are given scores ∼0. While we do not know the
underlying distribution or occurrence rates of anomalies in the
dataset, we do not expect many anomalies to appear in a random
selection of 0.5% of the data. At an anomaly score of ∼1, we
observe anomalies which could be of interest.

To investigate how our model makes its classifications and
verify that it behaves as expected, we take examples of the
top and bottom scored anomalies and overlay saliency plots
on each image. These plots highlight which areas of an image
are informing the model to make a classification. We map out
changes in the SHapely Additive exPlanations (SHAP Lundberg
& Lee 2017) values across each image. This, essentially, shows a
weighting of which pixels were relatively more important to the
model’s classification.

Figure 6 shows the results of our saliency mapping. We
show three correctly identified anomalies, one false positive,
and one example of a low scored image. In the correctly iden-
tified anomalies, SHAP values are highest at the pixels where
the anomaly is within the image. For the lens, this covers the
arc itself. For the merger, this is over the tidal features. For the
edge-on protoplanetary disk, this is over the butterfly shape of
the object.

The SHAP values for the false positive have an interesting
distribution. AnomalyMatch has highly weighted the core of the
galaxy – which could be an AGN in this case – and the extended,
loosely wound spiral arm. This has the appearance of a tidal

Fig. 5. Anomaly score distribution obtained by applying our final
trained AnomalyMatch model on a random subset of the HLA of
∼500 000 cutouts. We find that the distribution is highly weighted to
zero, as expected. The majority of our sources are not anomalous.

feature in a merger beyond the disk and towards a second small
system which may be a satellite.

Finally, the last image is of a star field where we can see
the SHAP values either weight up or down different areas of the
image. However, it has mainly down-weighted the pixels with
many stars with empty space between them.

Figure 6 demonstrates that AnomalyMatch has successfully
been trained to make anomaly scores based on source(s) within
the image, rather than on another property of the image. Even
in images containing only one source, it weights up pixels based
on dividual sections of the galaxy rather than the entire object
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Fig. 6. Saliency plots for three highly scored anomalies, one high scor-
ing false positive, and one low-scoring image, presented as heat maps of
the SHAP values assigned to each pixel. These visualisations highlight
the regions most relevant to the models predictions, often correspond-
ing to features a human might also consider significant (or lack thereof,
in the case of the final image).

in the image. This is shown with the lens image (image 1),
where AnomalyMatch primarily uses the lens itself to make the
classification instead of the galaxy within the image.

3.4. ESA Datalabs

To store our data, conduct training, and complete inference over
the images we utilised the platform ESA Datalabs. This platform
allowed for direct access to data from many of ESA’s observato-
ries and missions where it is a partner with other agencies. This
removed the requirement for downloading observations or the
movement of data. We took advantage of the newly integrated
GPU cluster which was available via the platform, and allowed
us to both train our models and conduct inference efficiently, as
proved by the timescale of this project.

We fully trained the model over our training set (1400
labelled and ∼99 000 unlabelled images) and took less than four
hours on a GPU via ESA Datalabs. To make classifications over
all ∼100 million images took 2.5 days running the code on ESA
Datalabs with no user input, or intervention. The main bottle-
neck in efficiency was loading the images into memory to then

be inferred over. This was done via HDF5 files in batches of
100 k.

This high level of efficiency shows that ESA Datalabs is
an ideal platform for large-scale data exploration. With the
addition of GPUs to the platform, applying machine learning
algorithms to large quantities of observational data is straight-
forward. This will facilitate further exploration of a wide range
of observational datasets, including JWST, Euclid, and HST.

4. Results

To perform the anomaly sub-classification, we initially selected
the top 5000 scored anomalies from the HLA. First, we
apply de-duplication to these 5000 samples. The output from
AnomalyMatch is a CSV file containing the filename of the
source and the score given to the source. In our case, the source
filename is the source ID found in the HSC. We cross match each
of our sources with the HSC based on this, and extract their coor-
dinates. We then apply an aggressive radial cross match between
each of the sources within 10′′.

We applied such a large cut as the likelihood that two of our
anomalies are within this separation was low. It allowed us to
completely de-duplicate the final sample, and ensure we were not
using expert time re-inspecting duplicate entries. This reduced
the number of anomalies from 5000 to 1339 unique images. This
also highlights the high level of shredding and duplication in the
HSC. Upon de-duplication, DOR acted as the expert classifier
and classified each anomaly according to the system defined in
Section 3.

4.1. Detected anomalies

The unique 1339 anomalies taken from the ranking of high-
est anomaly score were classified into their sub-classifications.
This was done by a combination of accounting for morphol-
ogy and searching the literature for works related to each
anomaly. Table 1 shows a breakdown of these classification of
the anomalies. Figure 7 shows a representative sample of all sub-
classifications where we found at least five anomalies, except for
our ‘odd’, ‘nominal’, and ‘unknown’ classifications, which will
be presented later in the section. The ‘nominal’ classification is
our false positive rate, where AnomalyMatch returned a normal
source.

The largest population of anomalies we find are merging or
interacting galaxies (∼50%). These are likely the most common
type of anomaly that we are searching for, as well as the most
distinctive. With our aggressive de-duplication, these represent
629 merging systems rather than individual systems. The cutouts
used in AnomalyMatch contain a field of view of 7.5′′ × 7.5′′,
therefore galaxy mergers contained in the same source cutout
will be de-duplicated under one ID. Following our definition, not
all of our classified merger anomalies have a secondary. Many
are highly disturbed merging or post-merger systems, with only
one system in the image.

It is also important to note that for some merger classifi-
cations, the full extent of the system is not visible in the field
of view of the cutout. However, the tidal features of the system
are and, therefore, the anomaly score was ranked highly. Look-
ing at these systems within ESASky reveals the full system and
associated literature when the field of view is adjusted.

The second most numerous anomaly we detect is gravita-
tional lenses (and arcs, if classified under the same category).
These are currently the main anomaly being searched for in the
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Fig. 7. Five examples of every anomaly sub-class for which we found at least five objects (excluding lensed quasars for later discussion), selected
as representative of that sub-class.

A227, page 10 of 15



O’Ryan, D. and Gómez, P.: A&A, 704, A227 (2025)

Table 1. Breakdown of anomalies found in the development of the
AnomalyMatch algorithm.

Classification N Found N Referenced

Merging Galaxy 629 212
Gravitational Lenses 140 54

Odd Galaxy 164 60
Nominal Galaxy 163 60

Unknown Morphology 43 0
High Redshift Galaxy 28 7

Jellyfish Galaxy 35 17
Overlapping Galaxy 39 26

Gravitational Arc 39 19
Clumpy Galaxy 11 5

Galaxy Hosting a Jet 13 5
Galaxy Hosting an AGN 8 4

Ring Galaxy 12 5
Lensed Quasar 5 5

Collisional Ring Galaxy 2 0
Edge-On Protoplanetary Disk 2 2

Galaxy Hosting Supernova 2 2
Submillimetre Galaxy 1 1

field, and therefore, made up a large portion of the training set.
Due to the shape and position of lenses, the main source of con-
tamination in our results will be spiral arms, or other features
which appear like arcs around galaxies. The different luminosity
of the lens aids in the classification, however this is not always
the case. We identify many gravitational lenses that are already
identified in the literature – but many candidate new lenses. As
we did not attempt to model and confirm them we point out that
these are only candidate lenses which require either follow-up
observations or modelling.

We do not include our sample of 39 gravitational arcs from
our lens classification here. Often, these arcs – formed by clus-
ters rather than galaxies – are so large, that they extend out of
the field of view of our source cutouts. We see the true extent
of these systems in ESASky, although only parts of them are
flagged as anomalies here. Other cutouts containing the arc are
removed in our aggressive cross matching and de-duplication of
10′′. We also ensure that each of our 39 arcs is unique using
ESASky.

We find a population of what we have termed ‘high red-
shift’ galaxies (z > 1). These are systems that appear highly
disturbed, or affected in the image, but are at the threshold of
being detected. Looking at those which are referenced, we find
that these systems are representative of high redshift galaxies.
We also find them to be small and clumpy.

The clump classification we make provides a sample of 11
systems. These galaxies could also be mistaken for merging
galaxies, as they often look irregular compared to the general
galaxy population. However, the disks often host many more
than one other core – which would be expected in mergers –
and often these are contained in spiral arms, which would be
destroyed in the merging process.

We find 35 different jellyfish galaxies in our 1339 unique
systems. These have been classified as such as they clearly have
stripping occurring, and they are residing in a dense cluster envi-
ronment. On each of the examples shown in Figure 7, the bow
shock is present in the direction of travel.

Next, we identify a similar number of overlapping galaxy
systems, with the whole system included in the field of view.

A very small sample (13) of our found anomalies are galaxies
which host relativistic jets. These can rarely be detected in the
F814W filter of HST (the most famous being M87, which is
shredded and appears multiple times in the HSC). Our systems
are much smaller and often show a small jet or object moving
away from the galactic core. This classification was made by
comparing to the literature, where galaxies with active jets made
up just two of the samples we found. However, upon recognising
this morphology, we were able to make more classifications.

Our final two classifications are AGN-host galaxies (8) and
ring galaxies (12). Our classification of an AGN is primarily
from the literature, where all but one of these systems has an
associated reference. Otherwise, the requirement for ancillary
data would make this classification difficult with AnomalyMatch
alone. Finally, we identify ring galaxies by their morphology as
the structure is easily recognisable compared to others.
AnomalyMatch successfully detected several types of

anomalies for which we had provided no explicit training exam-
ples, such as lensed quasars. While these unseen anomaly types
likely share morphological features with our trained classes (e.g.
lensed quasars may exhibit arc-like features similar to gravi-
tational lenses or multiple bright regions like mergers), their
detection demonstrates the method’s ability to generalise to mor-
phologically similar but distinct anomaly types. However, we
acknowledge that unseen anomalies with fundamentally differ-
ent morphologies from our training set would likely be missed.
Figure 8 shows the four systems that we found in HLA. We
initially provided AnomalyMatch with no examples of these,
however, even in the first training iterations, it identified these
anomalies and scored them highly. Therefore, we added one to
the training set and identified four additional lensed quasars.

Figure 9 shows the identified collisional rings, edge-on
protoplanetary disks, and galaxies hosting a supernova. While
ancillary data are required for the classifications of supernova
hosts and edge-on protoplanetary disks, we confirm these with
the literature here. This is also true for our classification of
a submillimetre galaxy, where the object we identify has a
large repository of literature associated with it. However, our
collisional rings are not represented in the literature and are,
therefore, classifications we have made by checking examples of
known collisional rings and confirm their morphology is similar.

Finally, we include three general classifications in our
released catalogues: odd, nominal, and unknown galaxy mor-
phologies. As stated in our classification scheme, we define odd
galaxies as those which show an odd morphology which could
be identified as due to interaction or RPS. However, we find that
they do not fit this criteria. Often, they are galaxies within a
dense environment showing some distortion. Figure 10 shows
ten representative examples of this distortion possibly due to
harassment by other cluster members. Some of these odd galax-
ies are not in a cluster, and simply are irregular galaxies that
AnomalyMatch has scored highly. It is not unreasonable for
these to have been detected with our extended training set of
different anomalies, particularly if including mergers.

Galaxies we classify as nominal by visual inspection, but
that received a high score by AnomalyMatch, represent the
contamination in our final anomaly sample. We find a contami-
nation rate of ∼10%. Figure 11 shows a representative example
of ten sources. Primarily, these sources are very small sources
which exhibit some potential merging behaviour, but it is dif-
ficult to make a specific classification. Other examples include
sources with artifacts from the observation itself, aligned with a
point source and star fields. Star fields with this morphology are
often either from the Panchromatic Hubble Andromeda Treasury
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Table 2. First five rows of the MRT released with this work.

SourceID RA Dec Classification Referenced

4000862191779 8.461384 –7.833325 Lens False
4000705851114 186.877395 33.544637 Lens False
6000532112741 342.211252 –44.513375 Merger True
4000905661818 34.404996 –5.224907 Lens True
6000265754287 53.175990 –27.773749 Merger True

Notes. The table contains the (1) Source ID from the HSC, (2) Right Ascension in degrees, (3) Declination in Degrees, (4) classification in this
work, and (5) whether the classification was made using the literature.

Fig. 8. Five lensed quasars (Einstein crosses) that were found in this
work. All of which are represented in the literature. However, using
HST, we would not expect to find unreferenced systems.

(Dalcanton et al. 2012) or studies of large globular clusters with
the ACS instrument. Therefore, many of the nominal images we
find here are anomalous when compared to the rest of the data,
but they are of limited value to the astrophysical community.

Finally, we find 43 objects with morphologies defying clas-
sification. Some of these objects may not be galaxies but rather
other objects that we have limited expertise in classifying.
Figure 12 shows ten example sources we have been unable
to classify. We release these to the community for further
discussion, or use, but do not attempt to make morphology clas-
sifications here. None of these objects have definitions in the
literature.

We release each of these catalogues as a machine-readable
table (MRT). The table contains the source identifier from the
HSC, its right ascension and declination, our classification, and
whether the source has been classified by using the literature. An
example of the first five rows of the table are shown in Table 2.
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Fig. 9. Anomalies where less than five objects were found in this work.
We find two collisional ring systems, two further edge-on protoplane-
tary disks, and two galaxies containing supernovae.

For the ease of use of our catalogue, we also
release all of the sources and table on Zenodo (DOI:
10.5281/zenodo.15298641). Here, the images are contained
in separate .zip files based on their anomaly classification. The
filenames are the Source IDs of the sources.

5. Discussion

Conducting robust and complete anomaly detection is non-
trivial. As stated previously, utilising supervised machine learn-
ing methods suffer from a lack of training data, and the complex
and variable nature of anomalies to be found. Using this test run
of the neural network AnomalyMatch during development, we
have been able to extract a range of anomalous objects from a
limited training set. With this SSL approach, AnomalyMatch is
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Fig. 10. Ten examples of sources to which AnomalyMatch gave a high anomaly score and we have classified as odd morphologies. These galaxies
are close to being classified as nominal galaxies – for instance, of little interest to the community – but have odd morphological features. These are
often due to these galaxies residing in dense environments.

Fig. 11. Ten examples of sources to which AnomalyMatch gave a high anomaly score, but we have visually classified as nominal images. These
include sources which exhibit some features, but are too small in the field of view to give definitive classification. It also includes some star fields,
as well as artifacts in unique alignments.

Fig. 12. Ten examples of sources to which AnomalyMatch gave a high anomaly score, but we have been unable to morphologically classify. Many
of these could be jellyfish galaxies, as they appear to show RPS signatures. However, they do not reside in a dense cluster environment. Others
show curved morphologies, which are do not fall into our classification scheme here.
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able to distinguish unique morphologies from general ones using
an incredibly limited set of labels.

Other works focused on anomaly detection often must begin
from using similarity searches, to citizen scientists to identify
large samples for further searches (Lintott et al. 2008; Lochner &
Bassett 2021; Mantha et al. 2024; Euclid Collaboration 2025c).
Conversely, AnomalyMatch can be used as a baseline approach
to grow existing samples of anomalies from the literature. It can
also be employed in a flexible manner, where other anomalies
not included in the initial labelled dataset can be detected and
extracted during the hunt for other objects.

This is the main difference between the envisioned imple-
mentation of AnomalyMatch and what we find here. We started
by searching for edge-on protoplanetary disks – as they are very
rare objects – but expanded our training set to include other
objects like mergers, lenses, and jellyfish galaxies upon their
serendipitous discovery. This approach results in a varied out-
put which will contain objects a user is not interested in, but
the inclusion of the active learning loop in the training process
allows them to filter out unwanted anomalies and retain those
which are desired. For instance, in this work, the majority of
the anomalies we find are mergers. Mergers are reasonably com-
mon – although difficult to build large samples of. In the future,
we would use the active learning loop to remove these objects,
increasing purity and accuracy in finding a desired anomaly.

In this work, we find 811 unreferenced objects in our sample
of 1339 objects. However, by the nature of using the HLA and,
specifically, HST to search for anomalies, we are limiting our
capability for identifying new objects. The HST is not a survey
telescope: observations must be applied for, and PIs specifically
request the coordinates and objects they wish to observe. There-
fore, any anomalies we do find are either in the background of
observations of another astrophysical source of interest, or are
the target of the observation in question. The latter is particu-
larly true for edge-on proto-planetary disks, where these targets
of exceptional interest are rarely observed ‘by accident’ in the
background of targeted observations. The fact that ∼65% of our
anomalies are not represented in the literature thus shows the
exceptional potential of AnomalyMatch for application to survey
telescopes’ data.

With survey telescopes, much of the data will be completely
unexplored and rarely looked at besides with machine learning
algorithms. This role is where AnomalyMatch will excel and, as
shown in this work, be able to identify objects of various mor-
phologies that can then be classified into different categories.
Missions such as Euclid and Vera C. Rubin observatories are
perfect for this role, where Terabytes of data will be collected
and processed per night.

In the future, AnomalyMatch will be used to search for spe-
cific types of anomalies that the user can hone in on. By ranking
objects in this way, we will be able to rapidly find and increase
the size of our samples of different anomalies while using visual
inspection. As found in Gómez et al. (2025), anomalies identi-
fied with the 1% highest scores have a high precision, or a high
chance to be only or almost only anomalies – assuming such
objects are present in the data of them in the first place. However,
extracting them still requires visual inspection by the user.

6. Conclusion

We have developed and deployed an innovative approach based
on semi-supervised and active learning for the purpose of
identifying sources with anomalous morphologies. The method
– AnomalyMatch – has been created as an out-of-the-box tool,

which has been integrated into the ESA Datalabs platform. It has
an intuitive and interactive UI, which seamlessly combines semi-
supervised learning methods with active learning so a user can
identify objects of interest efficiently and with few labels. The
full benchmarking and testing of this algorithm is described in
Gómez et al. (2025).

In this work, we release the anomalies that we discovered in
the HLA while developing this approach. Using a large test set
of 99.6 million image cutouts in the F814W filter of HST, we
ranked them all by anomaly score. To start, we aimed to identify
more edge-on protoplanetary disks. Using a training set of just
three labelled objects, a large sample of nominal and unlabelled
data, we searched the archive for objects of interest. During
active learning, we identified many other objects of astrophysical
interest and grew the training set based on what we found.

Upon completion of development, training this model, and
applying it across the HLA, we selected the top 1339 de-
duplicated sources. We then classified these into different sub-
classes of anomalies based on morphology. These included 629
mergers, 140 gravitational lenses, 35 jellyfish galaxies, and 2
edge-on protoplanetary disks. Using SIMBAD and ESASky, we
conducted a literature search based on the coordinates of each
object, and to investigate if they had been included in other cat-
alogues and samples. We find that ∼ 65%, 811, of the objects do
not appear in the literature.

We release a machine readable table containing source IDs,
positions and classifications of all sources we have discussed in
this work. We also release both the tables and images of each
object on Zenodo (DOI: 10.5281/zenodo.15298642), where
these samples are available for download.

The large number of unreferenced sources is excellent and
shows AnomalyMatch’s capability for identifying new systems.
This is especially notable given that our data comes from HST,
where each observation is targeted – meaning that either a PI
requested to observe the anomaly we have detected, or it is a
previously unnoticed background system.

This shows the potential of AnomalyMatch for use in large
surveys, such as Euclid or Vera C. Rubin Observatory, which
will observe large areas of the sky with no knowledge of the
objects contained within. The large volume of data that will
be produced per night will be impossible to manually search
and visually inspect. Therefore, using algorithms where small
amounts of data are required for training will be paramount for
anomaly detection in these large surveys.
AnomalyMatch thus fills a particularly fruitful niche. We

will be able to use this method to gradually grow our small
samples of different anomalies, while also uncovering anomalies
with completely new morphologies.
AnomalyMatch is freely available on the ESA Datalabs plat-

form with an open-source release pending a successful licensing
process currently underway at ESA. The software will be avail-
able on GitHub6. It has been developed with GPU capabilities to
be able to seamlessly explore ESA data archives and search them
for anomalies of interest to other users. This powerful addition
and implementation of SSL will enhance our ability to detect
anomalies across the field.

Data availability

A copy of the catalog is available at the CDS via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/704/A227.

6 https://github.com/esa/AnomalyMatch
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(McKinney 2010),and numpy (Harris et al. 2020). This work also extensively
used the community-driven Python package Astropy (Astropy Collaboration
2018, 2022). This work made extensive use of the new tool AnomalyMatch,
described in the companion paper Gómez et al. (2025). For writing and editing,
no additional AI tools were used in this manuscript.
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