
Beyond Point Masses. IV. Trans-Neptunian Object Altjira Is Likely a Hierarchical Triple
Discovered through Non-Keplerian Motion

Maia A Nelsen1 , Darin Ragozzine1 , Benjamin C. N. Proudfoot1,2 , William G. Giforos1 , and Will Grundy3
1 Brigham Young University, Department of Physics and Astronomy, N283 ESC, Provo, UT 84602, USA
2 Florida Space Institute, University of Central Florida, 12354 Research Parkway, Orlando, FL 32826, USA

3 Lowell Observatory, Flagstaff, AZ 86001, USA
Received 2023 December 16; revised 2024 September 23; accepted 2024 October 9; published 2025 March 4

Abstract

Dynamically studying trans-Neptunian object (TNO) binaries allows us to measure masses and orbits. Most of the
known objects appear to have only two components, except (47171) Lempo, which is the single known
hierarchical triple system with three similar-mass components. Though hundreds of TNOs have been imaged with
high-resolution telescopes, no other hierarchical triples (or trinaries) have been found among solar system small
bodies, even though they are predicted in planetesimal formation models such as gravitational collapse after the
streaming instability. By going beyond the point-mass assumption and modeling TNO orbits as non-Keplerian, we
open a new window into the shapes and spins of the components, including the possible presence of unresolved
“inner” binaries. Here we present evidence for a new hierarchical triple, (148780) Altjira (2001 UQ18), based on
non-Keplerian dynamical modeling of the two observed components. We incorporate two recent Hubble Space
Telescope observations, leading to a 17 yr observational baseline. We present a new open-source Bayesian point-
spread function fitting code called nPSF that provides precise relative astrometry and uncertainties for single
images. Our non-Keplerian analysis measures a statistically significant (∼2.5σ) nonspherical shape for Altjira. The
measured J2 is best explained as an unresolved inner binary, and an example hierarchical triple model gives the
best fit to the observed astrometry. Using an updated non-Keplerian ephemeris (which is significantly different
from the Keplerian predictions), we show that the predicted mutual event season for Altjira has already begun, with
several excellent opportunities for observations through ∼2030.

Unified Astronomy Thesaurus concepts: Trans-Neptunian objects (1705); Occultation (1148); Orbital
motion (1179)

Materials only available in the online version of record: machine-readable table

1. Introduction

Some of the best observational constraints on the streaming
instability (SI) hypothesis of planetesimal formation come from
the orbital properties of trans-Neptunian object (TNO) binaries.
In particular, models of post-SI gravitational collapse are able
to match many properties of TNO binary orbits like the
orientation and the wide separations with near-equal mass
ratios (e.g., D. Nesvorný et al. 2019). These binaries are
prevalent (W. M. Grundy et al. 2019) in the “cold classical”
portion of the Kuiper Belt, where heliocentric inclinations are
very low (especially when measured in dynamically mean-
ingful terms of proper/free inclinations relative to the local
forcing plane; see Y. Huang et al. 2022). The cold classical
population is also thought to have formed in situ, and NASA’s
New Horizons mission observations of cold classical Arrokoth
point to a specific example of SI formation (e.g., W. B. McKi-
nnon et al. 2020).

Dynamically, much of the post-SI gravitational collapse
process is about the evolution and flow of angular momentum.
The shrinking cloud soon has an excess of angular momentum
(per unit mass), which naturally forms wide near-equal-mass
binaries. However, some of this angular momentum cascades
down to the components of these binaries, which provides the

initial conditions for the spins and shapes of the components.
Most gravitational collapse models use effective particle sizes
and other approximations that make it challenging to resolve
the angular momenta of the individual components (D. Nesv-
orný et al. 2010, 2021; J. E. Robinson et al. 2020). Recent work
by B. Polak & H. Klahr (2023) shows that collapsing pebble
clouds in the outer solar system frequently form into many
components, many of which are near-equal binaries in close or
contact configurations. Future generations of models will
hopefully consider the evolution of these systems beyond
initial formation to determine how angular momentum is
partitioned into the reservoirs of a wide binary and two spins,
as this is an important observational constraint for future
models.
Some formation models already show that the components

of the main binary can have so much angular momentum that
one or both of the individual components should itself be a
binary (D. Nesvorný et al. 2010, 2021; J. E. Robinson et al.
2020). We would then distinguish between the “outer” binary
and an inner binary (or binaries). The “hierarchical triple” or
“hierarchical quadruple” configuration is a relatively dynami-
cally stable endpoint even for near-equal-size components, as
seen in stellar multiple systems. Presently, there is only one
observational example of a hierarchical triple (sometimes
called “trinary”) configuration in the solar system: the TNO
(47171) Lempo.
Whether caused by a nonspherical shape or an unresolved

inner binary, non-Keplerian effects on the outer binary are a
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sensitive probe of the angular momentum distribution within
TNO binary systems (D. Ragozzine et al. 2024, hereafter
Paper I). Such effects are also currently detectable for several
TNO binaries (B. C. N. Proudfoot et al. 2024b, hereafter
Paper II). We thus propose that the strength of non-Keplerian
effects can be a probe and constraint on the next generation of
SI and gravitational collapse models by providing information
on the shapes and spins of TNO binary components. In this
work, we go beyond point-mass models for the TNO (148780)
Altjira (2001 UQ18) to show that it is best explained as an
unresolved hierarchical triple.

In 2023, the Hubble Space Telescope (HST) observed Altjira
to get two more precise astrometric measurements as part of
Program 17206 (PI: Proudfoot). We combine these observa-
tions, a new Keck observation, and previously published
observations as described in Section 3. For the new HST data,
we measure the mutual astrometry and photometry of these
objects using a new open-source fitting program called nPSF,4

which is described in Section 4. We then use the non-Keplerian
astrometric orbit fitter MultiMoon (Paper I) to fit the new
Altjira data in Section 5. In addition to the usual Keplerian
model, we use a binary quadrupole–point-mass model and a
hierarchical triple model to describe the observations. We find
that a close hierarchical triple is the preferred model for Altjira
in Section 6. We provide an ephemeris for Altjira to support the
ongoing mutual event season, including quantifying the
importance of using a non-Keplerian model, in Section 7. We
interpret our results in Section 8 and conclude in Section 9.

2. Background

2.1. Hierarchical Triples in the Solar System

Systems of three gravitationally interactive bodies with
similar masses (sometimes called “trinaries”) are only long-
term stable in a “hierarchical” configuration where the third
object orbits in an “outer” orbit that is at least several times
larger than the “inner” binary. (The other stable configuration
of three bodies requires one object to be much more massive
than the others, e.g., Haumea and its two moons.) Among
planets and small bodies, the only well-characterized example
of a hierarchical triple is the TNO (47171) Lempo. Since we
will propose that Altjira is also a hierarchical triple, we discuss
Lempo in more detail here.

Originally thought to be a binary, Lempo was barely
resolved as a triple by the highest-resolution HST camera by
S. D. Benecchi et al. (2010). A non-Keplerian three-point-mass
model for the system shows an inner binary of the two larger
(∼250 km diameter) objects separated by ∼850 km orbited by
a smaller component (∼125 km) with a semimajor axis of
∼7600 km (Paper I). This configuration has about as much
angular momentum in the inner binary as in the outer binary.
However, something may be missing in our understanding of
the Lempo system, since A. C. M. Correia (2018) find that it is
dynamically unstable on timescales orders of magnitude shorter
than the age of the solar system. One hypothesis for this
inconsistency was that the existing approximate orbital model
overestimated the eccentricities, but Paper I shows that a three-
point-mass fit to the data preserves the significant eccentricities
(∼0.12 for the inner binary, ∼0.29 for the outer binary). Paper I

suggests that further work is needed to characterize and explain
the Lempo system and its long-term evolution.
Despite being a relatively massive system, Lempo was barely

resolved (0 03 or about 1 pixel) with the HST’s now-defunct
Advanced Camera for Surveys (ACS) High Resolution Channel.
Combined with the theoretical expectation for such objects, it
seems likely that there are many more hierarchical triples (or
quadrupoles) beyond the HST resolution limit, which is dozens
of primary radii for typical TNOs. We note that there are a few
recent HST surveys (Programs 14616 and 15821; PI: Porter)
with no published results yet. When the tighter binaries are very
close together (up to touching “contact hierarchical triples”),
they may be detectable by measuring the unique lightcurve of
contact or very close binaries (e.g., M. R. Showalter et al. 2021)
or multichord stellar occultations (e.g., R. Leiva et al. 2020). But
beyond quite small separations, such methods are also unable to
detect inner binaries. For these reasons, Paper I suggests using
non-Keplerian dynamical effects to detect and characterize such
objects like we attempt in this work with Altjira.

2.2. Discussion of Previous Analyses of Altjira

The formation and properties of TNO binaries formed by SI
may be different for different populations, so it is helpful to
consider the heliocentric dynamical classification of Altjira.
While it is a nonresonant classical object, its orbit is in the
region where the cold and hot classical populations overlap.
Specifically, Altjira’s heliocentric orbital inclination is near the
commonly used border between the cold and hot classical
population, with a free/proper inclination of 5°.4 (Y. Huang
et al. 2022). Depending on the cold/hot cutoff inclination,
Altjira has sometimes been classified as part of either
population in previous studies that sometimes used approx-
imate classification methods. While free inclination suggests
that Altjira is outside the core of the cold classical region, we
can follow W. M. Grundy et al. (2012) to use the inclination
distribution for these populations to make a probabilistic
estimate of Altjira’s membership in the cold-versus-hot
classical population. Previous studies of inclination distribu-
tions often used the “sin i times Gaussian” model, but this (as
well as the more commonly used Rayleigh distribution) is
better thought of as an approximation to the von Mises–Fisher
distribution best used for directional statistics like inclination
values (e.g., I. C. Matheson et al. 2023). Using the updated
mixture model of R. Malhotra & S. Roy (2023) for the free
inclination distribution of observed nonresonant classical
TNOs, we find that ∼7% of TNOs with free inclinations of
Altjira are consistent with cold classicals. This is smaller
compared to previous estimates because the cold classicals are
tighter in free inclinations (and not because of the particular use
of the directional statistics model). This probability is enhanced
by the fact that the wide binary nature is a better match for the
cold classical population. On the other hand, even though
Altjira is a relatively wide binary (semimajor axis of 2% of its
Hill radius), it would have had a reasonable chance of surviving
dynamical implantation (D. Nesvorný & D. Vokrouhlický
2019) and perturbations by passing TNOs (e.g., H. M. Campbell
et al. 2023), so its possible origin as a hot classical cannot be
easily ruled out. As a final consideration, Altjira’s color is more
consistent with that of cold classicals. Altogether, we think it is
quite reasonable in future studies to classify Altjira as a cold
classical with a relatively high inclination. A planned4 Located at https://github.com/dragozzine/nPSF.
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observation with JWST will provide powerful insight into
Altjira’s origin as well.

The second component of Altjira—the unnamed S/2007
(148780) 1—is only slightly fainter, on average; thus, this
system appears to be a near-equal-mass binary. The Keplerian
orbit was determined by W. M. Grundy et al. (2011) to have a
period of about 139.5 days, a semimajor axis of about 9904 km,
and a system mass of about 3.95× 1018 kg. The orbit was
eccentric and inclined by about 35° to the equatorial plane
(W. M. Grundy et al. 2011). The overall system absolute
magnitude is H; 6. An approximate thermal measurement
leads to estimated diameters of -

+246 139
38 km and -

+221 125
31 km for

the two components (E. Vilenius et al. 2014). This is based on a
weak detection and/or upper limits and involves the assump-
tion of equal-albedo, equal-density spheres, so there is
significant statistical and systematic uncertainty. These sizes
correspond to a density of -

+0.30 0.14
0.50 g cm−3 and albedo

of -
+0.04 0.01

0.18.
S. S. Sheppard (2007) obtained some sparse information on

the lightcurve for Altjira and found some discernible variations
over two nights of observations at the ∼0.1 mag level and
concluded that more data were needed. W. M. Grundy et al.
(2011) report that the secondary ranges from being 0.3 mag
brighter to 0.6 fainter than the primary in five epochs spanning
a year (and we confirm significant variability below). We thus
expect that one or both components are highly elongated.
Long-term non-Keplerian monitoring and/or resolved photo-
metry can better determine how each of the components
contributes to the angular momentum budget, but for our
present modeling effort, we assume that only the primary is a
nonspherical quadrupole while the secondary is assumed to be
a point mass (see Paper I and further discussion below).

W. M. Grundy et al. (2011) find that Altjira is predicted to
have mutual events—where the primary and secondary shadow
and/or occult one another—around 2028. We confirm and
update this prediction below. Although the observation of such
mutual events is challenging and the interpretation even more
so (e.g., D. L. Rabinowitz et al. 2020), it provides an exciting
opportunity to probe the properties of the components of Altjira
without having to wait for a stellar occultation.

2.3. Bayesian Parameter Inference

Below, we use Bayesian parameter inference to both
measure new relative positions of Altjira and to infer orbit
and spin parameters when combined with previous astrometry.
Both modeling efforts use Bayesian parameter inference
“fitting” methods to determine information about model
parameters based on the data. For clarity, we describe here
the basic properties of Bayesian parameter inference as applied
to our modeling methods (see Papers I and II for more detailed
discussion). Many of these techniques are standard statistical
methods that can be explored further in other references (e.g.,
D. W. Hogg et al. 2010; D. Foreman-Mackey et al. 2013;
D. W. Hogg & D. Foreman-Mackey 2018; A. Gelman et al.
2020; R. van de Schoot et al. 2021).

Bayesian parameter inference is philosophically based in the
idea that our belief about parameters in a model is best
described as probability distributions. When new data are
added to a problem, the original probability distribution for a
parameter (the “prior”) is updated to a new probability
distribution (the “posterior”). When using a single model, this
update is controlled by a simplified version of the Bayes

theorem where the posterior is the prior multiplied by the
“likelihood,” which is the probability that the observations
would be obtained assuming the parameters are known. The
prior is usually chosen to be “uninformative” within physically
allowed limits (e.g., the masses must be positive) so that the
data-driven likelihood is the primary determinant of the
posterior. Parameter values that give high probability to the
data (high likelihoods) are favored and thus have high posterior
probability. Determining the likelihood requires a “noise
model,” and we use the common assumptions that the data
(whether pixels or astrometry) are independent, each with a
previously known uncertainty that is assumed to be Gaussian.
Thus, our model for the likelihood is equivalent to the standard
calculation of χ2. It is thus likely that our Bayesian inference
methods would give quite similar values for the “best fit” (or
“maximum likelihood”) compared to standard χ2 minimization
modeling. However, Bayesian inference is generally more
accurate at estimating uncertainties, especially when these are
correlated, because the posterior is a joint probability
distribution over all parameters and thus can include correla-
tions, degeneracies, etc. The main challenge with Bayesian
methods is that they can be computationally expensive.
In realistic use cases, the posterior is determined numerically

through an algorithm that returns a large list of sets of
parameters (“posterior draws”) that are samples from the
posterior probability distribution. These posterior draws can
then be studied, summarized, and simplified for presentation.
The posterior probability distribution of a parameter is easily
calculated by taking a histogram of the list of posterior draws.
For example, a summary of the “best fit and uncertainties” for a
single parameter is often determined by taking the posterior
draws and finding the 50th percentile (e.g., the median) and
using the 16th and 84th percentiles for the uncertainties (as we
do below). When the posterior probability distribution is
Gaussian (as is often the case), this is effectively equivalent to
the typical understanding of best fit and uncertainties. As
another example, the probability distribution of any calculation
based on the inferred parameters can be determined by
performing the calculation for each individual posterior draw
and summarizing as before. For example, our model below
infers parameters about the position of the objects in the image
but then calculates the derived parameter of the relative
astrometry, which is summarized as a best fit and uncertainty.
The most common algorithm for sampling from the posterior

and generating the list of posterior draws is a Monte Carlo
technique called Markov Chain Monte Carlo (MCMC).
Starting with an initial guess, MCMC methods produce the
desired list of posterior draws given a “forward model” that can
evaluate the posterior probability (likelihood times prior) given
a specified set of parameters. Like all optimization methods,
MCMC requires an initial guess that strongly affects the first
iterations, and this “burn-in” or “warm-up” portion of the
algorithm should be removed. The size of the burn-in is
determined by visual inspection of the outputs (though it is
often specified in advance for convenience). Our algorithms
include a step after the prespecified burn-in that removes
severely underperforming walkers and replaces them with
combinations of remaining walkers and then runs a short
additional burn-in (see Paper I).
Different MCMC algorithms proceed differently from the

initial guess with varying levels of efficiency and complexity.
In every case, the algorithm proposes a new “link” in the
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“chain” based on the current set of parameters. This new link is
either accepted (because it has a better posterior probability,
though lower-probability links are accepted probabilistically to
properly explore the parameter space) or the current link is
repeated. Another analogy for this process, which we use, is
that of a “walker” taking “steps” around the parameter space.

Parallel processing and statistical advancements have led to
the very highly used emcee algorithm for MCMC sampling
(D. Foreman-Mackey et al. 2013). This algorithm uses an
ensemble of walkers (or chains) and the property of the
ensemble to automatically learn about the shape of the
parameter space (e.g., parameter scales and correlations). This
is a very effective method for sampling from posteriors with
moderate numbers of parameters that do not have widely
separated modes (e.g., local minima or disconnected regions of
parameter space that are good fits). Both of our fitting
algorithms reasonably satisfy these criteria.

Like all Monte Carlo methods, continued sampling (slowly)
increases the accuracy of the sampling algorithm in represent-
ing the true posterior distribution. We choose to take a
sufficiently large number of samples (after discarding the burn-
in) so that the uncertainties in our parameters are characterized
well enough that our scientific conclusions are relatively robust.

By exploiting Bayesian parameter inference through emcee,
we are able to fit models to our data using state-of-the-art
statistical and computational methods.

3. Observations

Non-Keplerian effects evolve on much slower timescales
than the binary orbital period, so we benefit significantly in
extending the baseline of observations with new data from HST
and Keck. These observations for determining Altjira’s binary
orbit focus on the precise relative astrometric positions needed
for orbit fitting. We use the original eight data points from
W. M. Grundy et al. (2011) as they are. These come from
HST/ACS, HST/WFPC2, and Keck, as discussed in
W. M. Grundy et al. (2011). We combine these with an
additional observation obtained from Keck and two new
observations from HST/WFC3.

Keck observations of the system were obtained on 2020
January 5 at a mean time of 9:06 UTC and mean air mass of
1.34. We used the NIRC2 narrow-field infrared camera with a
plate scale of 100.5 pixels arcsec–1 along with the Keck II laser
guide star adaptive optics system (D. Le Mignant et al. 2006) to
correct for the smearing effect of atmospheric turbulence.
A nearby 13th magnitude star was used for tip–tilt correction.
A total of six usable 180 s exposures were recorded through the
H filter, with exposure pairs recorded in each of three
consecutive dither positions. After flat-fielding and subtracting
the other dither positions, astrometry was done on each of the
coadded pairs by fitting a Lorentzian point-spread function
(PSF) with the same width parameters to each of the two
components in the image. Plate scale and camera orientation
details were taken from S. Yelda et al. (2010). Based on prior
experience with this instrument configuration with targets of
similar faintness, the 1σ astrometric uncertainties were taken as
3 mas, although the scatter between the measurements from the
three dither positions was somewhat smaller than that.

As part of HST Program 17206, two additional single-orbit
visits of Altjira were acquired in 2023. These visits each
consisted of six dithered observations using HST’s WFC3
scheduled at times at which our preliminary analysis indicated

that the positions of the two system components had the most
uncertainty in previous modeling (i.e., high “information gain,”
as discussed in Paper II). These two visits were designed to
achieve high astrometric precision by maximizing signal-to-
noise with observations using HST’s wide F350LP filter.

4. Fitting an Arbitrary Number of PSFs with nPSF

We here introduce a new open-source5 precise PSF fitting
routine called nPSF. nPSF works similarly to the description
of PSF fitting routines in W. M. Grundy et al. (2008) and
D. Ragozzine & M. E. Brown (2009), which are standard in the
field. We then use nPSF to measure astrometry for the two
observations from HST/WFC3. These methods are enhanced
by the use of Bayesian parameter inference methods discussed
above.

4.1. How nPSF Works

For solar system small bodies, it is common that the
separation of the sources is several pixels and the width of the
PSF (e.g., the FWHM) is only a few pixels. Even when the
separation is comparable to the FWHM, it is possible to
perform relative astrometry until the separation is less than
∼2 pixels, where it becomes very challenging, if not impos-
sible, even for equally bright sources (e.g., S. D. Benecchi et al.
2010). Even when the separation is clearly larger than the
FWHM (the components are “resolved”), the light from the
sources may overlap, requiring simultaneous modeling of each
of the sources.
Precise relative astrometry depends on accurately measuring

the center of light of two or more sources. HST benefits from
having a very stable and well-understood PSF as a function of
camera, filter, approximate pixel location, and telescope focus
value. We use theoretical supersampled PSFs as provided by
the well-known TinyTim software package (J. E. Krist et al.
2011) with occasional approximations (e.g., not using the exact
pixel locations of the sources in the PSF generation process).
Though TinyTim is not officially recommended for accurate
WFC3 PSF modeling, we note that precise relative astrometry
does not require highly accurate PSFs because measuring the
center of light (basically the position-weighted average of the
counts) is relatively robust relative to the statistical precision
for these faint objects. We have tested this by using the
“wrong” PSF model for synthetically generated data, which
leads to an insignificant systematic effect.
nPSF models each image separately. A subsection of the

image (e.g., 50 × 50 pixels) approximately centered on the
primary component is selected. Cosmic rays are cleaned using
the method of P. G. van Dokkum (2001) as implemented by
C. McCully & M. Tewes (2019). The median of the pixels is
subtracted to remove any overall constant background. Pixel-
by-pixel uncertainties are accounted for using a Poisson photon
noise model. This allows us to gather uncertainties from each
image individually that are fully propagated to astrometric
uncertainties.
Using standard methods, a model image is constructed for

comparison to the observations. At the beginning of the
analysis, the user can choose n, the number of PSFs to include
in the model. The model requires multiple free parameters,
primarily the x- and y-positions and “heights” (e.g., the total

5 https://github.com/dragozzine/nPSF
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brightness), for each PSF. We also allow the HST focus to be a
free parameter by generating a grid of model PSFs with
different focus values. The floating focus parameter is then
rounded to the value of the nearest pregenerated PSF. With a
fine enough grid of focus values, we closely approximate
having a fully floating focus parameter. This approximately
models HST “breathing” and also allows for some compensa-
tion for the fact that the theoretical model PSF is likely not an
exact match to the observed PSF. The PSFs are inserted at their
model locations using fractional pixel shifts of the super-
sampled theoretical PSFs. We include the charge diffusion
kernel contained within each modeled TinyTim PSF. Using our
noise model, we calculate the overall likelihood by summing
the log likelihoods of each individual pixel; that is, we
reasonably assume that all pixel counts are independent.

We use Bayesian parameter inference (discussed in detail
above in Section 2.3) to explore the range of models (although
an optimization mode is also implemented). This determines
the “posterior” probability distribution, e.g., a list of self-
consistent sets of parameters that are a good match to the data
and that also automatically provide uncertainties and correla-
tions between each parameter. We use the emcee package.
Priors are generally uninformative, and initial guesses are set
by visual inspection of the image. After fitting for image
coordinates, the pixel-to-world function in astropy
(The Astropy Collaboration et al. 2013) uses information in the
image headers to calculate the posterior distribution of the
relative astrometric offsets in R.A. and decl. Internally,
MultiMoon uses time as measured from a clock located at
the TNO and relative astrometry in ecliptic coordinates. A final
step in nPSF outputs a single line of astrometric data in these
units that can be copied directly into an observation file for
MultiMoon.

After completing the prespecified number of MCMC
sampling steps, nPSF generates plots to allow for visual
inspection of the sampling as well as sample images for the
parameters with the maximum likelihood. The time taken for a
single likelihood evaluation is very short (tens of milliseconds),
so nPSF is not explicitly parallelized. A typical run takes less
than ∼1 day of wall clock time for a single CPU to analyze a
single image, even for an extensive exploration of parameter
space.

We performed a suite of injection and recovery tests to
confirm that nPSF was working well and to test the limits of its
performance. For example, under ideal injection and recovery
conditions, we find that it can just successfully recover a
secondary when the separation in pixels is about the same as
the brightness difference in magnitudes. We have also validated
nPSF on a variety of past HST programs, focusing on Trans-
Neptunian Binary astrometry and finding adequate consistency
with published observations.
We note that even though the processes are similar in theory,

we found that PSF fitting problems can be very different in
practice depending on where they fall along three axes:
semiresolved versus well-resolved, similar brightnesses versus
unequal brightnesses, and measurement of a known source
versus detecting a new source (or placing upper limits). nPSF
does well for known objects with similar brightnesses even
with close separations. It is not automatically ideal for
semiresolved unequal brightnesses without some extra care
(e.g., setting a prior for the brightness ratio of the components).
It can be used to provide approximate upper limits for
nondetections, but injection/recovery tests would be more
accurate and significant.

4.2. Application of nPSF to Altjira HST Images

We used nPSF on the two epochs (2023 February and
October) of HST/WFC3 images of Altjira. All 12 images were
run with initial guesses based on inspection of the image and all
model parameters for a two-PSF fit. We used 2500 burn-in
steps and 2500 additional steps for 100 walkers, except for one
image from the October visit that needed 500 extra steps to
sample well. One image from each visit was excluded due to
systematic errors and problems with cosmic-ray masking,
which did not allow their fits to converge. The other five
images appeared converged based on visual inspection and had
no issues. The derived astrometry and uncertainties are shown
in Table 1.
The results for Altjira have the observed positions reason-

ably near the positions predicted based on previous data. They
also have very small (submilliarcsecond) uncertainties. In
February and October, the secondary was 0.21 and 0.57 mag
fainter than the primary, respectively.

Table 1
Derived Astrometry from HST Images Taken in 2023 February and October

Time Δ Lat. Δ Long. Δ Lat. Error Δ Long. Error

2459982.70877 −0.067317 0.157316 0.00091621 0.00080187
2459982.71397 −0.066984 0.159926 0.00082586 0.00076244
2459982.71927 −0.067997 0.158797 0.00090732 0.00081523
2459982.72456 −0.065999 0.158752 0.00092021 0.00082179
2459982.72976 −0.067761 0.158984 0.00088429 0.00079804

2459982.71927 −0.067212 0.158755 0.00089078 0.00079987

2460240.8251 0.083471 −0.169464 0.00110204 0.00102173
2460240.8303 0.084002 −0.170261 0.00110006 0.00102710
2460240.8406 0.082228 −0.171161 0.00113814 0.00108419
2460240.8457 0.083687 −0.170873 0.00110498 0.00108649
2460240.8509 0.081580 −0.171009 0.00115472 0.00109073

2460240.8418 0.0829938 −0.17055 0.00111999 0.00106205

Note. Table of derived astrometry from each new HST/WFC3 image from nPSF as well as the averages from each visit. Time is in “System” Julian Date, e.g., with
the light-travel time correction to Altjira included. Relative positions are given in J2000 ecliptic coordinates.
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nPSF uses pixel-by-pixel uncertainties that are used to
determine confidence intervals for relative positions for each
individual image. Current practice combines these into a single
astrometric measurement by taking the mean and standard
deviation of the best-fit positions from each image (after
discarding obvious outliers). The rationale for this is that such a
technique is better at incorporating systematic uncertainties,
though using the standard deviation of the best fits is not an
ideal way of propagating uncertainty, especially when only a
few images are used. For these observations, the standard
deviation of best-fit values is quite similar to the reported
uncertainties. If the image-by-image uncertainties were accu-
rate, the standard deviation of the positions would be about 5
times smaller; this suggests that there are systematic effects so
that our image-by-image uncertainties are optimistic.

We explicitly tested the difference between using image-by-
image uncertainties and the best-fit averaging method in our
MultiMoon fits and found that the results were not
significantly different in accuracy or precision of the important
orbit and spin parameters. For consistency with previous
modeling methods, and to account for systematic uncertainties,
we use the average points and their standard deviations in our
detailed analysis below.

Most of the time, the relative motion of the components of
Altjira is less than 1 mas hr–1. Thus, we do not expect to see,
nor do we see, motion during the course of the observations. In
other solar system small bodies, motion can be much faster,
suggesting that image-by-image nPSF analysis would be more
accurate in providing astrometry that includes information
about the motion instead of averaging it out.

We discuss below the possibility that one or both of the
components of Altjira may themselves be a close binary. We
checked the residuals of the nPSF astrometry fits but found no
clear evidence for a third object in the images. This is
consistent with the expected separations of these binaries
derived below, which are far below the resolution limit.

5. Methods

Combining all the relative astrometric measurements for
Altjira provides the observational constraints on our orbit
modeling. These are summarized in Table 2.

We fit these data using three different orbit models: a
Keplerian (two-point-mass) model, a binary non-Keplerian
model of a quadrupole and a point mass, and a non-Keplerian

model of three point masses. To accommodate non-Keplerian
orbital modeling, we use the MultiMoon code powered by
the SPINNY n-quadrupole integrator. A detailed explanation
and validation of SPINNY and MultiMoon is provided in
Papers I and II, but we provide an overview of key aspects here
before discussing our analysis for Altjira specifically.

5.1. The SPINNY n-quadrupole Model

SPINNY integrates the orbit and spin dynamics of an
arbitrary number of quadrupoles or point masses (as in
A. C. M. Correia 2018). Quadrupoles are characterized by a
spherical harmonic expansion of the potential where J2R

2 and
C22R

2 quantify the oblateness and prolateness, respectively.
The orientation of the quadrupole is described using Euler
angles equivalent to orbital elements such as the “spin
inclination” isp; these are defined relative to the J2000 ecliptic
frame. For small bodies like the components of Altjira, the
dominant contribution to the quadrupole strength is the shape
and orientation of the body, not the interior mass distribution.
However, these spherical harmonic terms do not uniquely
provide information on the shape, so an assumed shape model
is required to calculate a specific value of J2. For example,
assuming a triaxial ellipsoid model with semiaxes a, b, and c,
J2R

2 and C22R
2 can be used to determine the overall shape by

using the following equations:

( )= + +a J R c C R5 10 , 12
2 2

22
2

( )= + -b J R c C R5 10 , 22
2 2

22
2

as discussed in more detail in Papers I and II.
SPINNY calculates the spin–orbit coupling (including the

back torque of the orbit on the spin of the body), which leads to
both apsidal and nodal precession. In practice, there are many
degeneracies between the model parameters and some para-
meters that are not constrained by the observations. For
example, the spin rate, the prolateness (C22R

2), and the angle
associated with the long axis of the quadrupole (ωsp) are
practically unconstrained when the spin period is much shorter
than the orbital period because the rotational effects easily
average out. In the case of Altjira, short-term variability from
S. S. Sheppard (2007) combined with the relatively wide
separation of the binary means that these parameters are not
expected to be meaningfully constrained, though we do include
them in our model for completeness. Furthermore, we have

Table 2
Relative Astrometry for (148780) Altjira

Julian Date Date Telescope Instrument/Camera a dD cos Δδ s a dD cos σΔδ

2453953.767 2006 Aug 6 HST ACS-HRC −0.17182 0.06302 0.00109 0.00408
2454306.58 2007 Jul 25 HST WFPC2-PC −0.16332 −0.03667 0.00167 0.00168
2454320.431 2007 Aug 8 HST WFPC2-PC −0.27679 −0.00742 0.00204 0.001
2454380.396 2007 Oct 6 HST WFPC2-PC −0.05278 0.04552 0.001 0.0019
2454416.885 2007 Nov 12 HST WFPC2-PC 0.14054 −0.06317 0.00138 0.00118
2454672.799 2008 Jul 25 HST WFPC2-PC 0.15723 −0.00858 0.00133 0.00143
2455176.892 2009 Dec 11 Keck II NIRC2 −0.36534 0.03793 0.003 0.003
2455412.109 2010 Aug 3 Keck II NIRC2 −0.03594 −0.03938 0.006 0.003
2458884.879 2020 Feb 5 Keck II NIRC2 0.18001 −0.06656 0.003 0.003
2459982.981 2023 Feb 7 HST WFC3 0.16501 −0.04991 0.00092 0.00079
2460241.099 2023 Oct 23 HST WFC3 −0.17699 0.06817 0.00065 0.0011

Note. The relative R.A. ( a dD cos ) and decl. (Δδ) positions of Altjira’s secondary, along with measurement uncertainties in arcseconds. Julian Date is geocentric; the
specific location of the observatories is negligible and ignored.
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found that there can be many degeneracies when considering a
model with two quadrupoles, even if only the oblateness terms
are considered. Generally speaking, the observed non-Kepler-
ian motion is mostly due to orbital precession, which is the sum
of precessions caused by the two quadrupoles. (Technically,
this assumes that most of the angular momentum is in the orbit,
which is the case for Altjira; the case where there are three
angular momenta reservoirs is poorly understood.) Similar to
how a Keplerian model can only determine the sum of the
masses, Altjira’s observational data can only constrain a
weighted sum of the J2R

2 values for the two components.
Based on theoretical expectations (see Papers I and II), we
hypothesize that the approximate quantity measured is

f f+M J R M J Rcos cos1 2,1 1
2

1 2 2,2 2
2

2, where Mi is the mass of
each object and fi is the obliquity of the spin to the orbit. This
implies that the unknown mass partitioning between the two
components affects the interpretation of the shapes; on the
other hand, extensive observations and non-Keplerian model-
ing can break the mass degeneracy in certain cases.

Thus, for simplicity, we consider only the primary as having
a nonspherical shape and thus call this the binary quadrupole–
point-mass model. In actuality, the two components are similar
brightnesses and thus presumably have similar values of J2R

2,
suggesting that the two components individually might each
have about half of the J2R

2 predicted in our model.
At a sufficiently large separation, a close binary appears like

a large quadrupole in terms of its dynamical effects. For
example, Paper II found that a close-in satellite would have

( )
( )=

+
J R

q

q
a

1

2 1
, 3s2

2
2

2

( )
( )=

+
C R

q

q
a

1

4 1
, 4s22

2
2

2

where q=mAa/mAb, mAa and mAb are the masses of the two
(unresolved) components, and as is the semimajor axis of the
secondary’s orbit around the barycenter. For an equal-mass
binary composed of two equal-size spheres, =J R aA2

2 1

2
2, where

aA is the separation between the two components (twice the
barycentric as).

As discussed below, the inferred value of J2R
2 for the

components of Altjira suggests such an elongated shape that a
close inner binary is a reasonable hypothesis. We thus also
consider a (close) hierarchical triple model composed of three
point masses, also provided by SPINNY. Again, to reduce
model complexity and avoid degeneracies, our model assumes
that only the primary is composed of an unresolved close
binary (of two point masses). This “inner” binary is orbited, as
before, by the observed second component in the system,
which constitutes the “outer” binary.

Many other configurations are possible, such as two “inner”
binaries in a hierarchical quadruple system or that the
secondary is a close binary orbited by a triaxial primary. The
differences between these models cannot be probed by the
current observational data, though precise lightcurve observa-
tions would help. However, a statistically significant detection
of J2R

2 in our simplified model requires that the two
components together deviate from point masses in some way.
It also provides measurements of the sum of the angular
momentum of the two components and is thus an observational
constraint of how the system formed by understanding how

angular momentum is partitioned in the system as discussed
above.
In principle, SPINNY can also model the Sun’s gravitational

influence on a binary (or triple) system. However, within a
critical semimajor axis acrit (given by Equation (3) of
P. D. Nicholson et al. 2008), a binary’s dynamics are
dominated by J2 rather than the Sun’s influence. For the mass
and J2 of Altjira, acrit∼ 30,000 km. Since Altjira’s semimajor
axis is well within this boundary, solar gravity can be safely
ignored. Thus, for all modeling performed here, we neglect the
Sun’s influence.

5.1.1. Bayesian Parameter Inference from MultiMoon

Given a set of model parameters, SPINNY efficiently
calculates the relative positions of all the components at all
the observation times. MultiMoon uses the forward model
from SPINNY to infer the spin and orbit parameters of our
models.6

As described in Paper I, MultiMoon takes these relative
positions and projects them into the plane of the sky as seen
from the geocenter (the relative position of the observatories is
negligible and ignored), including the light-travel time
correction. This provides a model for relative astrometric
positions that is then compared to the data assuming
independent Gaussian noise with uncertainties listed in
Table 2. That is, the χ2 goodness-of-fit metric for these model
parameters is calculated in the usual way. For Altjira, a single
χ2 calculation takes tens of milliseconds for a Keplerian model
(which is performed analytically without using SPINNY) and
about 1 s for the non-Keplerian models.
To explore and understand how the fit is improved by varying

parameters, MultiMoon uses Bayesian parameter inference
powered by emcee (D. Foreman-Mackey et al. 2013) as
described in Section 2.3 and Paper I. For each MultiMoon
run, various parameters can be “fixed,” or frozen, while other
parameters “float.” Initial guesses are provided for a large
number of “walkers,” which allows for multiprocessor calcula-
tions that take advantage of our supercomputer resources. After
completing a burn-in, the walkers continue to explore the
parameter space, where each walker step provides a sample from
the posterior probability distribution of the parameters. The
ensemble of these samples can then be used to calculate which
parameters provide adequate fits to the data. Both the burn-in
and total run length are set in advance but confirmed to be
appropriate by visual inspection of the chains using plots
provided by MultiMoon.
Calculation of the Bayesian posterior probabilities requires

the choice of priors for all the parameters and a specific noise
model that determines the likelihood. The likelihood assumes
Gaussian uncertainties; e.g., the log likelihood (to an unim-
portant constant) is given by c= -log 1

2
2 (e.g., D. W. Hogg

et al. 2010). We generally choose uninformative flat priors in
all our parameters to allow the observational constraints to
control the posterior probabilities. There are two major
exceptions. We restrict C R J R22

2 1

2 2
2 as physically reason-

able (see discussion in Paper I and A. C. M. Correia 2018).
When modeling a hierarchical triple, we also require the
secondary to be less massive than the primary, where this is

6 MultiMoon is publicly available at https://github.com/dragozzine/
multimoon, and the code version we use is essentially the same as used in
Paper II, available on Zenodo (doi:10.5281/zenodo.10620251).
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now referring to the two (unresolved) components in the
“inner” binary. We believe that these prior choices do not
significantly affect our conclusions.

5.2. Binary Non-Keplerian Runs

We now turn specifically to our analysis of Altjira. The binary
non-Keplerian run refers to our model where the primary is a
quadrupole and the secondary is a point mass. Excluding a
variety of preliminary and exploratory models (including those
discussed in Paper II), our final model of this system used
MultiMoon with 960 walkers, 20,000 burn-in steps, and
20,000 posterior sampling steps. The resulting 19.2 million
posterior samples provide a highly accurate sampling. The
SPINNY integration tolerance was 10−10, consistent with other
analyses and tested to be sufficiently accurate to not introduce
significant systematic uncertainties. We fix the spin rate
parameter and approximate radius to 1.7453× 10−4 (rad s−1)
and 123 km and confirm that these fixed parameters do not affect
the results. (These parameters affect how the orbital motion
changes the unobserved spins.)

5.3. Hierarchical Triple Runs

As above, the three-point-mass Altjira fits used 960 walkers,
20,000 burn-in steps, and 20,000 sampling steps. We
confirmed that a SPINNY tolerance of 10−9 did not affect
the results.

Three-point-mass models can have 15 free parameters (two
sets of six primary-centric orbital elements and three masses),
and without astrometric measurements of the inner binary,
there are few constraints on its orbit. As a result, our goal was
not to provide a full posterior distribution for these fits but
rather to find examples of parameter sets that have high
posterior probability. This provides a “proof of concept” for
three-point-mass models that can adequately match the data.
We also note that we fix the eccentricity and argument of
periapse of the inner binary to 0 (since any reasonable tidal
model would force it to near 0 even with perturbations from the
outer component). Although it is not an optimizer (see
D. W. Hogg & D. Foreman-Mackey 2018 for discussion), we
use MultiMoon to explore the parameter space, usually
assuming circular orbits. The parameters were initialized by
taking the J2R

2 from the non-Keplerian binary fits and
assuming that this was provided by an equal-mass inner binary
using Equation (3) for the separation and the orientation angles
(e.g., isp and Ωsp) for the orientation of the inner binary. We
note that we did not include the center-of-mass–center-of-light
offset for the unresolved inner binary, which is a small
correction for our analysis but should be considered in
future work.

6. Results

Using an exploratory analysis by MultiMoon on less data,
Paper II found that Altjira showed evidence for non-Keplerian
motion. The observed large changes in brightness also require a
model that moves beyond point-mass spheres. We confirm
statistically significant non-Keplerian motion in our more
detailed analysis that includes the three new observations.

First, we consider a Keplerian model. This model reaches a
maximum log likelihood of 14.7 corresponding to a minimum
χ2 of 29.4 and a reduced χ2 of 2.09. Using the χ2 statistical
distribution, there is only a 0.97% chance that the residuals

from the Keplerian model are consistent with the assumed
noise model. As in Paper II, the orbital parameters for our new
Keplerian model were very similar to the previously published
parameters in W. M. Grundy et al. (2011) and the orbital
parameters in the non-Keplerian fits.
Note that non-Keplerian models explicitly include the

Keplerian model as a subset; for example, the binary non-
Keplerian model would return J2R

2≈ 0 if the true model was
Keplerian. For this reason, and because a non-Keplerian model
is a more accurate representation of the real Altjira system, we
prefer to think of the Keplerian model as an extreme version of
the non-Keplerian model that has all quadrupole components
set to 0 as a prior assumption.
The parameters (giving the 16th, 50th, and 84th percentiles

from our posterior samples) for the binary non-Keplerian
model of Altjira are reported in Table 3. The posterior
distribution for all the parameters is also plotted as a corner
plot in Figure 1, which includes one-dimensional marginal
distributions for each parameter and two-dimensional joint
distributions.
The fit is a significant improvement with a log likelihood of

−7.6, with a minimum χ2 of 15.2 and a reduced χ2 of 1.68.
The probability that a χ2 value this poor would have occurred
assuming an accurate noise model is 8.6%. The best fit is an
excellent match to the data as demonstrated by the residuals
plot in Figure 2. The improvement in χ2 from the Keplerian
model (Δχ2= 14.2) is highly statistically significant, even with
the addition of six additional parameters. We find a statistically
significant J2R

2 that excludes 0 (the Keplerian case) at ∼2.5σ.
While this is not overwhelming evidence for non-Keplerian
motion, it is clearly preferred over the Keplerian model. Note
that the precession period inferred from the best-fit non-
Keplerian model is a few thousand years, implying precession
of a few degrees. Keplerian fits, including W. M. Grundy et al.
(2011), have measured uncertainties of about half a degree for
orbital orientation angles, suggesting that even a few degrees of
non-Keplerian motion is reasonably detectable.
As expected, C22R

2 and ωsp are not meaningfully con-
strained. In theory, non-Keplerian motion can break the
Keplerian degeneracy and measure each mass individually,
but our data and model are not sufficient, and the mass
estimates for individual components in Table 3 and Figure 1
should not be used. We find that the quadrupole orientation (f)
is relatively well aligned (14-

+
6
12°) with the orbit, suggesting

that the obliquity of the primary (in the quadrupole model) or
the orbit pole of the inner binary (in the hierarchical triple
model) is well aligned with the outer binary.
The nominal J2R

2 of about -
+17,000 7000

9000 km2 is quite high for
the apparent size of the primary (as estimated from thermal
measurements). Even though this value is really like the sum of
the oblateness of the two components, it still motivates our
investigation of a hierarchical triple three-point-mass model.
As discussed above, we did not perform an exhaustive

search of the hierarchical triple parameter space. Our analyses
did identify some degeneracies and possibly even multiple
solution modes. Even so, we found an example of an excellent
fit to the data with such a model, assuming a circular inner
binary orbit. This fit has a log likelihood of −5.9 and a χ2 of
11.8, a substantial improvement to the quadrupole–point-mass
model, especially since both have the same number of free
parameters. This model has near-equal masses for the inner two
components (with a total mass of 3× 1018 kg) and a (primary-
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centric) semimajor axis of 124 km (corresponding to an orbital
period of about 5.5 hr). We note that this is closer than the sum
of the proposed radii, though it is similar to a contact
configuration using the 1σ sizes. This is somewhat smaller
than expected, as it implies an effective J2R

2≈ 7700 km2 from
Equation (3). It is possible that a configuration with a
semimajor axis around the expected 184 km separation is also
consistent with the observations. The inclination and longitude
of ascending node of the inner binary for this model are 42°
and 190°, respectively, relatively similar to that expected from
the binary non-Keplerian fit. Due to the various degeneracies
and limited data, we consider the quadrupole–point-mass and
the hierarchical triple fit to be reasonably self-consistent and
both adequate descriptions of the data with a preference for the
hierarchical triple fit since it has a higher likelihood.

We discuss the implications and interpretation of these fits in
Section 8 below.

7. The Ongoing Altjira Mutual Event Season

W. M. Grundy et al. (2011) noted that Altjira would have a
mutual event season (e.g., shadowings and occultations of the
two components) centered around 2028. With our new updated
orbit fits, we confirm and update this prediction.

The shapes of the components of Altjira are not known but
are clearly not spherical based on our measurement of J2R

2 as
well as significant (∼1 mag) variability in the relative bright-
ness of the components. Including detailed lightcurve observa-
tions could provide additional insight to the shapes but only in
the presence of multiple assumptions like uniform surfaces,
equal albedos, and equal densities. Stellar occultations would

provide valuable unique insights, but past predictions for
Altjira were generally not well constrained.
It is thus exciting to note that the components of Altjira have

just begun their mutual event season! Mutual events can
provide detailed information on absolute sizes, shapes, and
orientations of the individual objects that then directly
constrain albedos and densities. More subtle effects like albedo
variegations and phase curves can also be inferred in theory.
However, we provide a cautionary note that mutual events of

faint long-period nonspherical TNOs like Altjira can be very
complicated to observe and even harder to interpret. The very
similar Manwe–Thorondor binary is a valuable example.
Mutual event observations were attempted, leading to a
complex model with many remaining degeneracies and
uncertainties (D. L. Rabinowitz et al. 2020). Multiple nights
of highly precise data (requiring 4 m telescopes) at multiple
epochs over several years combined with advanced modeling
techniques are likely necessary to get detailed information
about Altjira. A more modest goal of measuring approximate
sizes and shapes may be more realistic. It does seem plausible
that even modest mutual event data could provide constraints
on whether the components are themselves contact or close
binaries.
A shape model is required for specific details of mutual event

predictions like estimated durations, depths, and lightcurve
shapes. This is beyond the scope of this paper. However, we
can provide the key orbital information needed for future
modeling and observing of the Altjira mutual events.
To begin, we provide an ephemeris for the Altjira system

from 2023 to 2033 in Table 4. This gives our predicted

Table 3
Non-Keplerian Orbit Solution for (148780) Altjira

Parameter Variable Name Posterior Distribution Best Fit Keplerian Fit

Fitted Parameters
Primary mass (1018 kg) M1 *-

+2.7335 0.52
0.79 3.547* L

Secondary mass (1018 kg) M2 *-
+1.3125 0.80

0.52 0.5114* L
Semimajor axis (km) a -

+9945.56 30
30 9995.99 9944

Eccentricity e -
+0.3511 0.0024

0.0025 0.3508 0.3523

Inclination (deg) i -
+25.105 0.21

0.21 25.1134 25.368

Argument of periapse (deg) ω -
+191.69 0.45

0.45 191.65 192.0

Longitude of the ascending node (deg) Ω -
+274.21 0.31

0.31 274.26 274.0

Mean anomaly (deg)  -
+124.25 0.41

0.40 124.28 124.2

Primary zonal gravitational harmonic J2R
2

-
+17, 359 6906

8759 16,219 L
Primary sectoral gravitational harmonic C22R

2 *-
+3796 2691

4203 5419* L
Primary rotation axis obliquity (deg) isp -

+19.377 5.34
5.61 17.614 L

Primary rotation axis precession (deg) Ωsp -
+243.86 40

19 249 L
Primary rotation axis position (deg) ωsp *-

+181.03 124
123 191.31* L

Derived parameters
System mass (1018 kg) Msys -

+4.0453 0.0360
0.0356 4.0588 3.99

System density (g cm−3) ρsys -
+0.37 0.24

0.74 0.30 L
Primary obliquity with respect to orbit (deg) f -

+14.44 6.20
12.23 11.810 L

Non-Keplerian orbital period (days) Porb -
+139.68 0.014

0.013 139.68 L

Note. Orbital and physical parameters from our non-Keplerian binary quadrupole–point-mass fit for Altjira. Parameters marked with an asterisk are not well
determined. Full posterior distributions of parameters and degeneracies can be seen in Figure 1. For example, although nominally a non-Keplerian fit can break the
mass degeneracy between the two objects, there are not enough data in this case to do so reliably; thus, only the sum of the masses is meaningfully constrained (and
unchanged from the Keplerian fit of W. M. Grundy et al. 2011). All fitted angles are relative to the J2000 ecliptic plane on Altjira-centric JD 2454300.0 (2007 July 18,
12:00 UT). For the system density, we use diameters of -

+246 139
38 km and -

+221 125
31 km (E. Vilenius et al. 2014). This fit has a χ2 of 14.6, and the probability that a χ2

value this high would be due to random noise is 8.6%, so the fit is statistically acceptable. The non-Keplerian fit is a statistically significant improvement over the
Keplerian fit (also shown) based on the improved χ2. Some hierarchical triple three-point-mass models provide even better fits to the observations, but these were not
explored rigorously.
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separations and relative positions for the Altjira binary
components using our non-Keplerian quadrupole–point-mass
model. Uncertainties are calculated using 100 random posterior
draws. (We note that this is similar to the methodology used to
produce the “Information Gain” calculation discussed in
Paper II.) This can be used to make predictions for close
approaches, although we note that it collapses the uncertainty
in time by expressing the uncertainty only in terms of positions.
(More detailed model predictions are available from the authors
upon request.)

Using these values, we can determine the properties of close
approaches by interpolation. These are presented in Table 5.
The x- and y-positions (ΔR.A. cosδ, Δδ) and velocities and
their uncertainties for each close approach are listed. We also
list whether the events are superior (primary in front of
secondary) or inferior (secondary in front of primary). We note
that a close approach of only 4.3± 1.3 mas occurred on 2023
November 3, only a short time after our 2023 October 23 HST
observation. Using spheres of the nominal sizes from
E. Vilenius et al. (2014), mutual events are expected when

Figure 1. Corner plot for the binary quadrupole–point-mass non-Keplerian Altjira orbit fit. Along the tops of the columns are the marginal posterior distribution for
each parameter, which can be used to determine the best fit and uncertainty for Gaussian distributions. The contour plots shows the 1σ, 2σ, and 3σ levels of the joint
posterior distributions between every pair of given parameters. Of particular interest is the J2R

2 posterior, which strongly disfavors the Keplerian model (J2R
2 = 0).

Also note that the C22R
2 parameter is constrained by the prior C22R

2 � J2R
2/2 but is not constrained by the data, as expected. All angles are measured relative to the

the J2000 ecliptic plane on JD 2454300.0 (2007 July 18, 12:00 UT).
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close approaches are less than 7 mas. Since an actual mutual
event was likely, our ephemeris implies that the mutual event
season for Altjira has already started.

We calculated the close approach predictions using our
Keplerian model and our non-Keplerian model to demonstrate
that non-Keplerian effects are necessary for accurate mutual
event predictions. For example, the separations predicted for the
same event differed by ∼3mas for superior events and ∼5mas
for inferior events, comparable to the sizes of the components.
The mutual event season is about 1.5 yr earlier in the non-
Keplerian model and centered roughly on 2026, which partially
explains why our predicted mutual events have started so soon.
Timing predictions differed by about 0.5 hr, growing to 1.5 hr
for superior events, comparable to the estimated timing
uncertainties. However, for inferior events, the timing predic-
tions were different between Keplerian and non-Keplerian by
32–50 hr! Inferior events happen near apoapse, so the precession

included in non-Keplerian modeling has a larger lever arm;
furthermore, the velocity is slower so that a larger distance in
position corresponded to an even larger difference in timing. We
conclude that including non-Keplerian effects can make a
significant difference in mutual event predictions.
Given the sensitivity of the predictions to small effects, it is also

worth mentioning that unmodeled systematic uncertainties could
lead to significant offsets from our predicted close approaches.
Possible systematic uncertainties are not included in Table 5.
Shadowing events are not shown in Table 5. Calculation of

the shadowing events (based on predictions for close
approaches as seen from the perspective of the Sun) shows
that they are about±1 mas separated from the occultations and
occur at a similar time for superior events and about 2 hr earlier
for inferior events. Differences in Keplerian and non-Keplerian
predictions for shadowing are very similar to the differences
seen in occultations.

Figure 2. Astrometric residuals for observations shown in Table 2 for the binary quadrupole–point-mass fit. Points are colored as a function of time to illustrate that
the residuals show no major time dependence. These residuals are consistent with Gaussian noise (p-value assuming a χ2 distribution of 8.6%).

Table 4
System Ephemeris

Julian Date Date a dD cos Δδ s a dD cos σΔδ r σr
(arcsec) (arcsec) (arcsec) (arcsec) (arcsec) (arcsec)

2459945.500 2023-01-01 00:00:00 −0.31319 0.10624 0.00185 0.00141 0.33073 0.00204
2459945.833 2023-01-01 08:00:00 −0.31180 0.10593 0.00180 0.00139 0.32931 0.00199
2459946.167 2023-01-01 16:00:00 −0.31036 0.10559 0.00175 0.00136 0.32783 0.00194
2459946.500 2023-01-02 00:00:00 −0.30885 0.10524 0.00171 0.00134 0.32629 0.00189
2459946.833 2023-01-02 08:00:00 −0.30729 0.10487 0.00166 0.00132 0.32470 0.00183
2459947.167 2023-01-02 16:00:00 −0.30568 0.10447 0.00162 0.00130 0.32304 0.00178
2459947.500 2023-01-03 00:00:00 −0.30400 0.10406 0.00157 0.00127 0.32132 0.00173
2459947.833 2023-01-03 08:00:00 −0.30227 0.10363 0.00153 0.00125 0.31954 0.00168
2459948.167 2023-01-03 16:00:00 −0.30047 0.10318 0.00148 0.00123 0.31770 0.00163
2459948.500 2023-01-04 00:00:00 −0.29862 0.10271 0.00144 0.00121 0.31579 0.00159

Note. The predicted R.A. and decl. positions of Altjira’s secondary from 2023 through 2033. Predicted positions, separations, and uncertainties are taken from a
sample of 100 random posterior draws of the binary quadrupole–point-mass model. We display the first 10 rows of the table.

(This table is available in its entirety in machine-readable form in the online article.)
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We can provide some context about the expected depth and
duration of mutual events assuming different shape models. First,
we note that since the two components have similar brightness, a
perfect shadowing and/or occultation would lead to a∼50% drop
in flux for an object that is typically V; 23mag in brightness.
Nonzero impact parameters and nonspherical shapes suggest that
this would be rare;∼10% drops in flux should be common for the
closest approaches. Since the objects are probably similar in size,
these drops should generally be gradual; e.g., ingress and egress
times are about half of the event durations. The fastest expected
brightness changes are ∼0.1 mag hr–1.

To estimate durations, we begin by noting that Altjira’s
typical distance is 45 au, where 1 mas corresponds to about
32 km. Taking the sizes from E. Vilenius et al. (2014), this
gives radii of approximately -

+3.8 2.2
0.6 and -

+3.4 2.0
0.5 mas, but this

assumes low equal albedos, equal densities, and spherical
shapes. Perhaps this is representative of the long axis of a
nonspherical shape. If we assume spherical shapes and −1σ
radii of 1.6 and 1.4 mas, then a grazing event requires a close
approach distance of only 3.0 mas. About 10 such events are
predicted, most of which have uncertainties that are reasonably
small so that the statistical expectation is a ∼95% chance of

Table 5
Close Approaches for (148780) Altjira

Julian Date Date Sep. Sep. Err. x x Err. y y Err. x Vel. y Vel. Event Type
(mas) (mas) (mas) (mas) (mas) (mas) (mas hr−1) (mas hr−1)

2459972.49306 2023-01-27 23:50:00 8.327 1.262 2.714 0.851 7.872 0.932 0.743 −0.256 Sup.
2460112.43403 2023-06-16 22:25:00 6.287 1.253 2.103 0.850 5.925 0.921 0.713 −0.253 Sup.
2460165.81944 2023-08-09 07:40:00 8.602 6.980 −2.823 6.192 −8.126 3.223 −0.386 0.135 Inf.
2460252.23611 2023-11-03 17:40:00 4.272 1.339 1.449 0.912 4.019 0.981 0.747 −0.266 Sup.
2460304.80208 2023-12-26 07:15:00 10.374 7.322 −3.328 6.490 −9.826 3.390 −0.409 0.139 Inf.
2460391.64236 2024-03-22 03:25:00 6.708 1.334 2.298 0.904 6.302 0.980 0.724 −0.261 Sup.
2460444.63542 2024-05-14 03:15:00 10.381 7.221 −3.475 6.390 −9.782 3.364 −0.381 0.135 Inf.
2460531.75347 2024-08-09 06:05:00 2.781 1.370 0.956 0.941 2.612 0.996 0.721 −0.265 Sup.
2460585.47569 2024-10-01 23:25:00 3.871 7.713 −1.307 6.805 −3.643 3.632 −0.393 0.143 Inf.
2460671.22222 2024-12-26 17:20:00 3.699 1.443 1.295 0.987 3.465 1.053 0.746 −0.274 Sup.
2460723.95486 2025-02-17 10:55:00 8.925 7.773 −2.997 6.855 −8.406 3.663 −0.397 0.142 Inf.
2460810.94097 2025-05-15 10:35:00 3.774 1.419 1.327 0.973 3.532 1.032 0.710 −0.267 Sup.
2460864.88889 2025-07-08 09:20:00 3.666 7.869 −1.302 6.919 −3.427 3.748 −0.375 0.142 Inf.
2460950.93750 2025-10-02 10:30:00 0.193 1.505 0.077 1.045 0.177 1.083 0.735 −0.278 Sup.
2461004.59375 2025-11-25 02:15:00 1.669 8.377 −0.573 7.353 −1.568 4.014 −0.400 0.149 Inf.
2461090.26736 2026-02-18 18:25:00 2.939 1.527 1.069 1.051 2.738 1.107 0.731 −0.278 Sup.
2461143.67014 2026-04-13 04:05:00 5.150 8.227 −1.832 7.214 −4.813 3.955 −0.380 0.145 Inf.
2461230.29167 2026-07-08 19:00:00 0.170 1.533 0.052 1.069 0.162 1.098 0.710 −0.276 Sup.
2461284.88542 2026-09-01 09:15:00 2.570 8.624 0.944 7.537 2.390 4.191 −0.378 0.150 Inf.
2461369.96875 2026-11-25 11:15:00 1.022 1.634 −0.384 1.142 −0.948 1.168 0.743 −0.289 Sup.
2461423.55556 2027-01-18 01:20:00 0.817 8.894 −0.294 7.767 −0.762 4.333 −0.396 0.153 Inf.
2461509.46875 2027-04-13 23:15:00 0.939 1.609 0.320 1.121 0.883 1.154 0.713 −0.282 Sup.
2461563.84722 2027-06-07 08:20:00 0.961 8.798 0.354 7.666 0.893 4.318 −0.368 0.149 Inf.
2461649.56944 2027-09-01 01:40:00 3.150 1.675 −1.165 1.186 −2.927 1.182 0.720 −0.289 Sup.
2461704.32639 2027-10-25 19:50:00 6.594 9.385 2.484 8.157 6.108 4.642 −0.387 0.157 Inf.
2461788.95833 2028-01-18 11:00:00 1.462 1.738 −0.532 1.222 −1.361 1.236 0.737 −0.296 Sup.
2461842.89583 2028-03-12 09:30:00 1.230 9.320 0.448 8.094 1.146 4.621 −0.381 0.155 Inf.
2461928.79861 2028-06-06 07:10:00 2.255 1.714 −0.845 1.214 −2.090 1.210 0.703 −0.289 Sup.
2461984.05903 2028-07-31 13:25:00 7.929 9.520 3.123 8.242 7.288 4.764 −0.366 0.156 Inf.
2462068.69097 2028-10-24 04:35:00 5.327 1.825 −2.060 1.305 −4.913 1.275 0.733 −0.302 Sup.
2462123.31944 2028-12-17 19:40:00 8.083 10.018 3.108 8.660 7.461 5.035 −0.390 0.162 Inf.
2462208.05208 2029-03-12 13:15:00 2.484 1.823 −0.954 1.293 −2.294 1.285 0.719 −0.299 Sup.
2462262.81597 2029-05-06 07:35:00 5.915 9.801 2.330 8.459 5.436 4.950 −0.365 0.157 Inf.
2462348.13194 2029-07-30 15:10:00 5.862 1.851 −2.283 1.333 −5.399 1.284 0.707 −0.299 Sup.
2462487.69097 2029-12-17 04:35:00 6.153 1.956 −2.404 1.406 −5.664 1.359 0.737 −0.312 Sup.
2462542.36111 2030-02-09 20:40:00 8.972 10.482 3.569 9.011 8.231 5.353 −0.381 0.165 Inf.
2462627.30556 2030-05-05 19:20:00 4.850 1.916 −1.929 1.377 −4.450 1.332 0.703 −0.303 Sup.
2462767.35764 2030-09-22 20:35:00 8.907 2.012 −3.532 1.468 −8.177 1.376 0.719 −0.313 Sup.
2462906.70139 2031-02-09 04:50:00 6.577 2.055 −2.633 1.485 −6.027 1.419 0.725 −0.316 Sup.
2463046.64583 2031-06-29 03:30:00 8.236 2.039 −3.359 1.490 −7.519 1.392 0.697 −0.310 Sup.
2463186.42708 2031-11-15 22:15:00 10.624 2.169 −4.292 1.594 −9.718 1.471 0.730 −0.325 Sup.
2463325.85069 2032-04-03 08:25:00 7.932 2.140 −3.276 1.562 −7.224 1.463 0.706 −0.318 Sup.
2463465.95139 2032-08-21 10:50:00 11.765 2.197 −4.866 1.628 −10.712 1.474 0.704 −0.322 Sup.
2463605.40972 2033-01-07 21:50:00 11.135 2.293 −4.626 1.691 −10.129 1.549 0.728 −0.333 Sup.
2463745.14583 2033-05-27 15:30:00 10.635 2.245 −4.486 1.661 −9.643 1.510 0.693 −0.322 Sup.
2463885.11806 2033-10-14 14:50:00 14.455 2.370 −6.134 1.773 −13.089 1.573 0.717 −0.335 Sup.

Note. Close approaches are defined as events where the primary and secondary are separated by less than 15 mas, not necessarily implying a mutual event. x and y
correspond to a dD cos and Δδ, respectively. Note that timing and depth uncertainty are significant for inferior events.

12

The Planetary Science Journal, 6:53 (15pp), 2025 March Nelsen et al.



some kind of event (especially when including shadowing).
There is significant correlation in the predicted close approach
distances so that clear observation and interpretation of an
earlier event could shrink uncertainties in later events. New
additional astrometric measurements may help somewhat,
especially later in the mutual event season. Conversely, precise
mutual events with clear interpretations can provide effective
astrometric observations.

Continuing with the small sphere model (1.6 and 1.4 mas
radii) and using the velocities given in Table 5, a central
superior event would last about 3.5 hr, and a central inferior
event would last about 7 hr. Noncentral events are correspond-
ingly shorter, though multiple events would have 1 hr
expected durations. If the objects are bigger (in some
direction), then these durations grow correspondingly.

All things considered, about ∼10 close approaches are likely
to yield strong mutual events. Several other close approaches
could lead to detectable mutual events if the components are
larger than expected, nonspherical, or composed of close
binaries, as we have hypothesized.

If one or both of the components is a close binary, this
changes the mutual event predictions because the components
are smaller (e.g., 1.1 mas if equal-mass, equal-albedo, equal-
density spheres) and because this inner binary would have
orbital motion that could be a few times faster than the outer
binary motion. This is similar to how an elongated object
rotating on a similar timescale to the mutual event duration can
significantly affect the shape of the resulting lightcurve.
However, the inner binary separation would also allow for
mutual events at larger separations.

Furthermore, because the inner binary is so close together,
mutual events between inner binary components would be
much more likely. If the inner and outer binaries are even
reasonably closely aligned, similar to what is seen in our fits,
inner mutual events could also be happening now on a
∼nightly basis. Depending on the separation and orientation of
the inner binary components, lightcurve observations could
potentially distinguish between a close binary, a contact binary,
and a single triaxial ellipsoid.

We suggest that the next step in preparing for Altjira’s
mutual events would be a detailed lightcurve of the system.
Such a lightcurve could detect inner mutual events or at least
provide information on the amplitudes, periods, and shapes of
the two components. This information is a prerequisite to
precise mutual event model prediction and interpretation. We
note that the binary components are sometimes separated by
0 3, which could lead to resolved lightcurves with high-quality
ground-based data under great seeing with PSF modeling. The
ephemeris in Table 4 can be used to predict such ideal
observational times.

As a final word of caution, we note that our ephemeris and
predictions depend on our model assumptions. It is possible
that a similar difference between the Keplerian and non-
Keplerian models would also be found in different non-
Keplerian models (such as a two-quadrupole model). Given the
statistical and systematic uncertainties, observing for as long as
possible before and after the nominal events is prudent.

We also speculate that inaccurate orbital modeling may be a
major contributing factor to the fact that mutual events have not
yet fulfilled their promise of improved characterization of other
TNO binaries (e.g., D. Ragozzine & M. E. Brown 2009;
D. L. Rabinowitz et al. 2020). For example, the error in the

ephemeris for Haumea identified in B. C. N. Proudfoot et al.
(2024a) could have contributed to the challenges of interpreting
observed mutual events, though Hi’iaka’s unexpectedly strong
lightcurve also contributed (D. M. Hastings et al. 2016).

8. Discussion

Given the observed non-Keplerian motion in Altjira,
what can we say about its shape? As noted above, =J R2

2

-
+17,000 7000

9000 km2 is not precisely detected and is unrealistically
assumed to be entirely attributable to the primary (with a point-
mass secondary). Still, to guide future interpretation, we can
comment on the implications of these measurements for the
shape of Altjira’s primary.
To convert a measurement of J2R

2 to a particular three-
dimensional mass configuration requires assuming a shape
model as well as a nominal size and a value of C22R

2. For
example, we computed triaxial ellipsoid models using
Equations (1) and (2) using a polar radius c= 123 km (the
nominal radius from thermal measurements), and C22R

2=
4000 km2 implies semiaxes of 374 × 243 × 123 km and a
density of only 0.06 g cm−3. Using the maximal C22R

2 of J2R
2/2

(which sets the intermediate axis to be equal to the polar
axis) gives a shape of 430 × 123 × 123 km and a density of
0.11 g cm−3. With the same values for the gravitational
harmonics, a polar radius of c = 73.5 (the −1σ radius from
thermal measurements) results in semiaxes of 418 × 73.5 ×
73.5 km and a density of 0.32 g cm−3.
The most extreme known solar system objects typically have

axis ratios of less than 2.5. For example, the extreme shape of
Trojan asteroid Polymele is inferred to be 13 × 12 × 5 km (H.
Levison 2024, personal communication). While we did not test
every variation of the parameters, there seems to be no set of
parameters where the shape was less extreme than Polymele
and the density higher than the lowest TNO density measure-
ments of ∼0.2 g cm−3. This can be alleviated by using a
smaller than nominal J2R

2 either due to uncertainties or by
noting that the nominal J2R

2 assumes that all of the J2R
2 is

concentrated in the primary. Overall, a triaxial ellipsoid is
typically an unsatisfactory shape model.
We consider a Cassinoid as a flexible model that

approximates a contact binary while being similar to observed
small bodies. A Cassinoid has a dumbbell-like shape, closely
representing the dumbbell figures of a rotating, self-gravitating
fluid body. (We note that a Roche model assumes fluid
strength-less interiors which are not an ideal physical
characterization of small TNO components.) It is very useful
as it has a simple algebraic representation that can easily be
used to calculate moments of inertia analytically. See the
Appendix of P. Descamps (2015) for more information about
Cassinoids. For the nominal J2R

2 and mass of Altjira, we find
that the minimum size of a Cassinoid model would require a
density of 0.2 g cm−3, a rather low value and also somewhat
inconsistent with the thermal size measurements. Considering
uncertainties suggests that a Cassinoid model has a ∼20%
chance of being an acceptable description of the observations.
To reach the higher nominal J2R

2 values implied by our fits
requires rejecting the contact binary model and adopting
components that are physically separated. For example, two
spheres with density of 0.5 g cm−3 (1 g cm−3) could be
explained by components of ∼85 km (∼70 km) in radius,
separated by 300–450 km. This would also be more consistent
with the thermal models, assuming that these measure the total

13

The Planetary Science Journal, 6:53 (15pp), 2025 March Nelsen et al.



surface area. We note again that a similar close hierarchical
triple configuration was found to be an excellent fit to the
observations.

Such a triple would not be resolvable by any current
telescope. It would also be more robust to possible issues of
dynamical stability than Lempo (Paper I) since it would be
much more hierarchical than Lempo (aout/ain; 40 instead of
5.5 for Lempo).

More advanced modeling of the shape of the components of
Altjira would be justified once lightcurve modeling (and then
mutual events) can provide additional constraints on relative
sizes and shapes. We also encourage the community to explore
opportunities to measure stellar occultations of the Altjira
components. Finally, we note that Altjira is scheduled to be
observed by JWST, which should provide some additional
insight into this system.

This nominal configuration is relatively similar to Lempo,
although the ratio of the outer and inner binary separations is
larger. Without knowledge of how the mass is distributed
between the inner and outer binary—which is not well
determined in our model—we cannot directly assess how the
angular momentum is distributed among the components.
However, it appears that, unlike the Lempo system, most of the
angular momentum for Altjira is in the outer binary. Whether
such a configuration is a reasonable outcome of gravitational
collapse triggered by SI requires more advanced collapse
models.

Another formation model to consider for cold classical
hierarchical triples is formation by binary–binary encounters
(e.g., A. Brunini & M. C. López 2020). Such encounters are
relatively common for binaries as wide as Altjira and are not
adequately studied. Like Lempo, Altjira’s inner and outer
binaries are relatively well aligned, which is not a common
outcome of these encounters, though additional modeling is
also needed to better understand this scenario.

9. Conclusions

TNO (148780) Altjira is proposed to be a cold classical TNO
binary with an unusually high inclination. Such cold classical
binaries are thought to be formed through gravitational collapse
after the SI. Altjira’s configuration is consistent with these
models and provides motivation for improved models that can
resolve the angular momentum contribution of individual TNO
binary components. It is also possible that Altjira formed or
was modified by binary–binary encounters.

We have modeled the non-Keplerian orbit of Altjira, adding
the newest HST data from 2023, which we analyzed using the
new PSF fitting routine nPSF, as presented in this paper. Using
the astrometry output from nPSF and astrometry from past
HST visits and Keck data between 2006 and 2020, we modeled
Altjira in different configurations with our Bayesian parameter
inference tool Multimoon (Paper I).

We confirmed that a non-Keplerian model for Altjira
was preferred over a Keplerian model at the ∼2.5σ level. A
binary quadrupole–point-mass model finds an oblateness of

= -
+J R 17,0002

2
7000
9000 km2, which is large than expected for the

size of Altjira. Even considering that the non-Keplerian effects
are likely due to both shapes, neither a triaxial ellipsoid nor a
Cassinoid (dumbbell) model are satisfactory for the majority of
our uncertainty region. We thus propose that one or both of the
components of Altjira are near-equal-mass unresolved “inner”
binaries. This is consistent with our result that a hierarchical

triple configuration is the best match for the data, though we
did not explore this parameter space in detail. We thus
conclude that Altjira is likely an unresolved hierarchical triple.
We also call attention to Altjira’s ongoing mutual event

season. After obtaining detailed lightcurves, mutual event
observations could provide significantly improved understand-
ing of the shapes, sizes, albedos, and densities of the
components of this system. We provide an ephemeris for close
approaches in this system—which is different from the
prediction using Keplerian orbits—but leave detailed predic-
tions for future work. We note that mutual event interpretations
are challenging, as seen for the very similar Manwe–Thorondor
system (D. L. Rabinowitz et al. 2020).
A self-consistent analysis of the physical properties of the

components of Altjira that combines mass and J2R
2 measure-

ments, thermal constraints, lightcurve shapes, and eventually
mutual event data would be able to determine detailed
information about the sizes, shapes, and configurations of this
primordial likely triple TNO.
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