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ABSTRACT
Luminous Fast Blue Optical Transients (LFBOTs) - the prototypical example being AT 2018cow - are a rare class of events
whose origins are poorly understood. They are characterised by rapid evolution, featureless blue spectra at early times, and
luminous X-ray and radio emission. LFBOTs thus far have been found exclusively at small projected offsets from star-forming
host galaxies. We present Hubble Space Telescope, Gemini, Chandra and Very Large Array observations of a new LFBOT,
AT 2023fhn. The Hubble Space Telescope data reveal a large offset (> 3.5 half-light radii) from the two closest galaxies, both
at redshift 𝑧 ∼ 0.24. The location of AT 2023fhn is in stark contrast with previous events, and demonstrates that LFBOTs can
occur in a range of galactic environments.
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1 INTRODUCTION

The development of wide-field, high cadence and deep optical
surveys in recent years - including the Zwicky Transient Facility
(ZTF, Bellm et al. 2019), Asteroid Terrestrial-impact Last Alert
System (ATLAS, Tonry et al. 2018), Panoramic Survey Telescope
and Rapid Response System (PanSTARRS, Chambers et al. 2016),
Gravitational-wave Optical Transient Observer (GOTO, Steeghs
et al. 2022) and Black hole Gravitational-wave Electromagnetic
counterpart array (BlackGEM, Bloemen et al. 2016), to name a
few - is leading to ever more transient detections in the extremes
of parameter space. This trend is set to continue with the Vera Rubin
Observatory (LSST Science Collaboration et al. 2009). Such surveys
led to the discovery of fast blue optical transients (FBOTs), first iden-
tified as a class by Drout et al. (2014) in ZTF. FBOTs rise and fade on
timescales of days, and have (early-time) 𝑔-𝑟 colours of -0.3 or bluer.
These events also have featureless, black-body-like spectra at early
times with inferred temperatures > 104 K (Pursiainen et al. 2018).
It has since become clear that the majority are infant supernovae
with low ejecta masses (Pursiainen et al. 2018), but a small number
fade too rapidly to be powered by Ni-56 decay (faster than 0.2-0.3
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magnitudes per day), have peak absolute magnitudes rivalling su-
perluminous supernovae (< −20), and have accompanying luminous
X-ray and radio emission. These bright, multi-wavelength FBOTs
have been dubbed luminous-FBOTs (LFBOTS, Metzger 2022), the
first example of which is AT 2018cow ("the Cow", Prentice et al.
2018; Margutti et al. 2019; Perley et al. 2019). Since AT 2018cow,
several other LFBOTs have been discovered (both in real time and
archival searches), with varying degrees of multi-wavelength cov-
erage. These include ZTF18abvkwla ("the Koala", Ho et al. 2020),
CSS161010 (Coppejans et al. 2020), ZTF20acigmel ("the Camel",
Perley et al. 2021; Bright et al. 2022; Ho et al. 2022c), AT2020mrf
(Yao et al. 2022) and AT 2022tsd ("the Tasmanian Devil", Ho et al.
2022a; Matthews et al. 2023). There are also a number of other
lower-confidence candidates (e.g. Ho et al. 2022b; Jiang et al. 2022;
Perley et al. 2023). Despite the growing number of LFBOT dis-
coveries, these events are intrinsically rare - the volumetric rate of
AT 2018cow-like LFBOTs is estimated to be no more than 0.1 per
cent of the local supernova rate (Ho et al. 2023b).

The nature of LFBOTs remains unclear. The timescale of their
light-curve evolution, X-ray and radio luminosity, late-time UV emis-
sion in the case of AT 2018cow (Sun et al. 2022, 2023; Chen et al.
2023a; Inkenhaag et al. 2023), and preference for star-forming dwarf
and spiral hosts have proved challenging to explain with a single self-
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consistent model. Circumstellar medium interactions around young
supernovae are a plausible origin for the early-time spectra and X-
ray/radio emission of some FBOTs (Pursiainen et al. 2018; Ho et al.
2023b), as well as for the optical polarisation behaviour (Maund et al.
2023). However, the peak absolute magnitude, rapid subsequent fad-
ing, high radio/X-ray luminosity and peculiar optical and radio polar-
isation of LFBOTs (Huang et al. 2019; Maund et al. 2023) require an
alternative explanation. Following AT 2018cow, a few main classes
of model emerged. These include central engines born in low-ejecta
core-collapse events, powered by black hole accretion or magnetar
spin-down (e.g. Perley et al. 2019; Margutti et al. 2019); mergers of
stellar-mass black holes and hydrogen-poor stars (e.g. Metzger 2022);
or the tidal disruption of a main sequence star (Perley et al. 2019)
or white dwarf by an intermediate mass black hole (IMBH, Kuin
et al. 2019). The former is motivated by the rapid light-curve decay
and multi-wavelength evolution which severely limits the possible
ejecta mass; the latter two also by the timescale - which is too fast
for a supermassive black hole (SMBH) tidal disruption event (TDE)
- and the weak (initially absent) hydrogen lines in the spectra. Many
of these scenarios face challenges. For example, a magnetar central
engine can power the early or late-time UV emission in AT 2018cow,
but not both (Chen et al. 2023b), while the environments of LFBOTS
thus far - at small offsets within star-forming dwarfs and spirals, and
with high circumstellar densities (Margutti et al. 2019) - favour a
short-lived, massive star progenitor over an IMBH TDE. Further in-
sight will come from similarly detailed studies of other LFBOTs, to
establish which features are common to all objects in this class, and
to understand the variety among them.

In this letter, we present multi-wavelength observations of a new
LFBOT, AT2023fhn ("the Finch"). The transient is significantly off-
set from the nearest galaxies, representing a deviation in terms of
its environment from previous LFBOTs. This letter is structured
as follows. In Section 2 we review how AT 2023fhn was discov-
ered, and present early-time X-ray and radio observations. Section 3
presents follow-up observations, including Hubble Space Telescope
(HST) imaging and Gemini spectroscopy. In Section 4 we discuss
possible interpretations, and conclusions are drawn in Section 5. We
adopt a cosmology with H0 = 69.6 km s−1 Mpc−1, Ωm = 0.29 and
ΩΛ = 0.71 (Wright 2006; Bennett et al. 2014). Uncertainties are
given as 1𝜎 unless otherwise stated, and magnitudes are quoted in
the AB system (Oke & Gunn 1982).

2 DISCOVERY AND CLASSIFICATION

2.1 Early photometry and spectra

AT 2023fhn was discovered on 10 Apr 2023 with 𝑚(𝑟) = 19.74 by
ZTF (Fremling 2023). The blue colour of 𝑔 − 𝑟 ∼ −0.47 and rapid
∼0.2 mag day−1 evolution immediately classified AT 2023fhn as an
LFBOT candidate. Ho et al. (2023a) subsequently obtained Gemini
GMOS-S spectroscopy of AT 2023fhn on 19-04-2023 (programme
GS-2023A-Q-127), finding a featureless blue spectrum. On 20 Apr
2023 they obtained a spectrum of the nearby spiral galaxy (∼5 arcsec
offset), yielding a redshift of 𝑧 ∼ 0.24. At this redshift, the earliest
ZTF 𝑔-band (12 Apr 2023) absolute magnitude is -21.5.

2.2 X-ray and radio observations

We triggered Chandra X-ray Observatory observations (PI: Chrimes;
program 24500143; Obs ID 26624), which were obtained on 25 Apr
2023 (06:58:08 – 15:46:51 UT). The faint-mode ACIS-S exposure

Table 1. VLA flux density upper-limits. These are given as 3 times the local
RMS. The third column lists the bandwidth. The final column lists limits on
the luminosity, assuming a redshift of 𝑧 = 0.238 (see Section 3.2).

Start date Freq. BW Texp Upper-limit Upper-limit
JD-2460056 GHz GHz Min. 𝜇Jy/beam 1028 erg s−1 Hz−1

0.80733 1.50 1.024 35.9 130 22.5
0.78309 3.00 2.048 30.0 35 6.0
0.76507 6.05 2.048 21.0 18 3.1
0.74688 10.00 4.096 21.1 18 3.1
0.72090 15.02 6.144 30.1 11 1.9
0.69229 21.94 8.192 28.2 17 2.9
0.66552 32.94 8.192 25.4 25 4.3

lasted 30 ks. The data were reduced and analysed with standard ciao
(v4.13, caldb v4.9.3) procedures including reprocessing, filtering
and source measurement with srcflux. Assuming a power-law with
a photon index Γ = 2 (Rivera Sandoval et al. 2018; Matthews et al.
2023), the unabsorbed source flux after correction for the Galac-
tic neutral hydrogen column density of 𝑁𝐻 = 2.4 × 1020cm−2

(Kalberla et al. 2005) is 7.6−1.8
+2.2 × 10−15 erg cm−2 s−1 (0.5-7.0 keV).

At the redshift of the spiral, this corresponds to a luminosity of
1.3−0.3

+0.4×1042 erg s−1, comparable to other LFBOTs at the same
epoch (Rivera Sandoval et al. 2018; Margutti et al. 2019; Kuin et al.
2019; Coppejans et al. 2020; Bright et al. 2022; Yao et al. 2022;
Matthews et al. 2023).

Early radio observations (within a few weeks of discovery) pro-
duced non-detections, including a 10 GHz Northern Extended Mil-
limeter Array upper limit of 2× 1029 erg s−1 Hz−1 on the luminosity
(Ho 2023), and upper limits from our own programme (SC240143,
PI: Chrimes) on the Karl G. Jansky Very Large Array (VLA). We
observed AT 2023fhn on 22 Apr 2023 (≈ 12 days post detection) in
standard phase-referencing mode using 3C286 as a flux density and
bandpass calibrator, with J1014+2301 and J1016+2037 as complex
gain calibrators. The observations were calibrated using the VLA
Calibration Pipeline 2022.2.0.64 in CASA version 6.4.1 with addi-
tional manual flagging. We imaged the data using the task tclean
in CASA with Briggs weighting with a robust parameter of 1. No
significant emission was detected at the source location. We pro-
vide the upper-limits in Table 1. These early-time non-detections are
consistent with the behaviour of previous LFBOTs. The transient
was subsequently detected with the VLA on 15 Jun 2023 (Ho 2023)
with luminosity 7.6× 1028 erg s−1 Hz−1 (at 10 GHz), also similar to
other LFBOTs at the same epoch (e.g. Margutti et al. 2019; Coppe-
jans et al. 2020). The rapid evolution (timescale of a few days) and
peak optical absolute magnitude of -21.5 places AT 2023fhn firmly
within the LFBOT region of timescale/peak luminosity parameter
space (see Figures 3 and 14 of Ho et al. 2023b). Along with the hot
featureless optical spectrum, X-ray and radio detections, AT 2023fhn
is unambiguously identified as a new AT 2018cow-like LFBOT.

3 FOLLOW-UP OBSERVATIONS

3.1 Hubble Space Telescope Imaging

3.1.1 Data reduction and photometry

HST WFC3/UVIS observations were taken with the F555W and
F814W filters on 17 May 2023 (PI: Chrimes; proposal ID
17238). Three 364 s exposures with sub-pixel dithers were taken
in each filter. The F555W exposures began 09:02:23 and ended
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Figure 1. HST images of AT 2023fhn, indicated by red pointers, and the nearby host galaxy candidates. North is up and east is left in all images. The transient
lies at a large offset from both the barred spiral to the south and the dwarf galaxy to the southeast. Smoothed and scaled 3.75×3.75 arcsec cutouts around
AT 2023fhn are shown in the inset panels. The diffuse emission northwest of the dwarf (satellite) galaxy is an alternative parent stellar population.

09:23:41 UT, the F814W exposures began 09:25:31 and ended
09:48:13 UT. The _flc images were combined using astrodriz-
zle1 (Fruchter & Hook 2002), with pix_frac = 0.8 and a final
pixel scale of 0.025 arcsec pixel−1. The transient is clearly iden-
tified in the reduced images, as shown in Figure 1. Two adja-
cent galaxies are fully resolved: a barred spiral to the south and
a dwarf/irregular to the southeast. These galaxies have Sloan Digi-
tal Sky Survey (SDSS) data release 16 (Ahumada et al. 2020) IDs
SDSS J100803.73+210422.5 and SDSS J100803.87+210425.8. We
perform photometry on AT 2023fhn with three methods. The first two
use standard photutils aperture photometry procedures in python
(Bradley et al. 2021), but the background level is calculated in two
ways. The first uses the MedianBackground estimator (using the
whole image for the estimate). The second uses an annulus around
the source (inner and outer radii of 1.5 and 4 times the aperture ra-
dius, and pixel values in the annulus clipped at ±3𝜎). For each of
these background estimations, two aperture sizes are used - 0.2 and
0.4 arcsec - with the appropriate aperture corrections for F555W and
F814W applied2. AB magnitudes are derived from the photflam
and photplam header values and the published conversion proce-
dures3. For the third method we use dolphot (v2.0, Dolphin 2000).
dolphot performs PSF photometry on each _flc image separately;
these measurements are combined to give the reported value and its
error. dolphot provides instrumental magnitudes in the Vega system,
but we instead report AB magnitudes using conversions calculated
with stsynphot (STScI Development Team 2020). Magnitude mea-
surements for each combination of filter and methodology are given
in Table 2. Smaller apertures and annulus background subtraction
results in fainter magnitudes, indicative of the presence of diffuse
emission around the transient (as can be seen in Figure 1, see insets).

1 Part of drizzlepac, http://drizzlepac.stsci.edu/
2 https://hubblesite.org/sites/www/home/
hst/instrumentation/wfc3/data-analysis/
photometric-calibration/uvis-encircled-energy
3 https://hst-docs.stsci.edu/wfc3dhb/
chapter-9-wfc3-data-analysis/9-1-photometry

Table 2. HST magnitudes 𝑚, and their uncertainties 𝛿𝑚, for AT 2023fhn.
In both filters, three photometry methods are listed - aperture photometry
with median background estimation, aperture photometry with annulus back-
ground estimation, and dolphot. For the non-dolphot measurements, two
aperture sizes (and hence enclosed energy corrections) are listed.

Filter Method Background Aperture m 𝛿m

F555W photutils Median 0.2′′ 24.31 0.02
F555W photutils Annulus 0.2′′ 24.38 0.02
F555W photutils Median 0.4′′ 24.13 0.03
F555W photutils Annulus 0.4′′ 24.30 0.02
F555W dolphot – PSF 24.57 0.01
F814W photutils Median 0.2′′ 24.17 0.03
F814W photutils Annulus 0.2′′ 24.27 0.02
F814W photutils Median 0.4′′ 23.94 0.04
F814W photutils Annulus 0.4′′ 24.11 0.03
F814W dolphot – PSF 24.45 0.07

3.1.2 Galaxy offsets and enclosed flux radii

The sky-projected spatial offset of a transient from its host is a key
piece of information for understanding its origin. Host-normalised
offsets, offsets divided by the half-light radius of the host, are widely
used in the literature (see Figure 4) as they account for the projected
extent of the host galaxy. In order to measure the offsets and host-
normalised offsets of AT 2023fhn from the two nearby galaxies, we
measure their centroids and half-light radii 𝑟50 (from Petrosian pro-
file fitting) using the python package statmorph (Rodriguez-Gomez
et al. 2019). We require objects to have at least 5 adjacent pixels,
each >1𝜎 above the background. The resultant segmentation maps
are convolved with a uniform filter of size 10 pixels and these fil-
tered segmentation maps are used to identify objects by requiring
values > 0.5. Enclosed flux measurements are not restricted to the
galaxy-associated pixels identified with this method; flux is mea-
sured out to rmax which extends beyond the segmentation area to
the faint outer regions (further than twice then Petrosian radius, for
details see Rodriguez-Gomez et al. 2019). We note that the transient
lies outside the pixels selected as associated with the galaxy in both
cases. Segmentation maps, radial light profiles in the direction of
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the transient, and statmorph Sérsic fits for the two galaxies in each
filter, are provided in the associated github repository4.

At 𝑧 = 0.238 - the redshift of the spiral (and its satellite, see Sec-
tion 3.2) - the physical scale is 3.80 kpc arcsec−1. From the centre of
the spiral, the projected offset of AT 2023fhn 𝛿𝑟 is 16.51± 0.09 kpc.
From the centre of the satellite, the offset is 5.35 ± 0.06 kpc (uncer-
tainties as described below). The non-parametric half-light radius r50
(enclosing 50 per cent of the flux, 𝑟50) is measured to be 4.5±0.2 kpc
in F555W for the spiral. Given the satellite’s ellipticity of 0.4 and
the orientation of AT 2023fhn, we take r50 along the semi-major
axis, which is 1.48± 0.10 kpc in F555W. In F814W, these values are
3.90 ± 0.13 kpc and 1.29 ± 0.10 kpc, respectively. This corresponds
to host-normalised offsets (𝑟n = 𝛿𝑟/𝑟50) of 3.7 ± 0.2 and 3.6 ± 0.2
in F555W, while in F814W, 𝑟n = 4.25 ± 0.14 and 4.1 ± 0.3 (for
the spiral and satellite respectively). The quoted offset uncertainties
are the quadrature sum of the transient positional uncertainty (given
by FWHM/(2.35×SNR), where FWHM is the full-width at half-
maximum and SNR the signal-to-noise ratio) and the uncertainty on
the galaxy centroids (𝑥c,𝑦c). The centroid uncertainties are calcu-
lated by re-sampling the input _flc image set 100 times using their
[ERR] extensions, re-drizzling each re-sampled set, and measuring
the morphological properties with statmorph on each iteration of
the re-drizzled image (see Lyman et al. 2017; Chrimes et al. 2019).
The mean and standard deviation of the resultant 𝑥c, 𝑦c and r50 distri-
butions are used, along with the AT 2023fhn positional uncertainties,
to calculate the values and their uncertainties quoted above.

3.1.3 Search for underlying and extended emission

Given the apparently isolated location of AT 2023fhn, it is prudent
to search for any underlying (extended) emission at the transient
location, such as a knot of star formation, cluster or background
galaxy. To establish whether the emission is unresolved, we first
select a reference point source in the image (the object at coor-
dinates 𝛼 = 10h08m03.13s, 𝛿 = +21d04m22.8s). Cutouts around
AT 2023fhn and the reference star are interpolated onto a pixel grid
with twice the resolution (enabling sub-pixel shifts), before subtrac-
tion of the reference image from the one containing AT 2023fhn.
The reference is scaled in peak flux and shifted in 𝑥,𝑦 to minimize
the standard deviation at the location of AT 2023fhn in the residual
image. The transient, reference and residual images are shown in
Figure 2. To determine if the residuals are consistent with a clean
point source subtraction, we perform photutils aperture photometry
(with an annulus) as described above. No significant residual flux is
detected, demonstrating that any underlying (non-transient) source
contributing significantly to the flux must be precisely co-located and
also unresolved (the physical scale at this distance is 95 pc pixel−1).
Making use of BPASS (Binary Population and Spectral Synthesis
v2.2, Eldridge et al. 2017; Stanway & Eldridge 2018) synthetic spec-
tra, we calculate the maximum mass of a stellar cluster which can
be present at the location of AT 2023fhn, without exceeding the
observed luminosity in either F555W or F814W. We find that the
maximum possible mass of an unresolved cluster rises with popula-
tion age, from 3×106M⊙ at 106 yr to∼ 109M⊙ at 1010 yr. Therefore,
the presence of a typical stellar cluster - at any age - cannot be ruled
out. To search for extended emission, we smooth the images with a
Gaussian filter (𝜎 = 1.5) and scale them to show diffuse background
light. The inset panels of Figure 1 show cutouts of the smoothed and
scaled images. Faint emission can be seen extending northwest of

4 https://github.com/achrimes2/Finch

F5
55

W
F8

14
W

Figure 2. Subtraction of a reference star at the location of AT 2023fhn. The
2×2 arcsec cutouts show the transient (left), the reference star (middle) and
the residual (right), after interpolating onto a finer pixel scale and subtraction
of the shifted and vertically scaled reference star. The emission is consistent
with being a point source.

3500 4000 4500 5000 5500 6000 6500 7000 7500
0

1

2

3

4

5

F
 [e

rg
 s

1  c
m

2  Å
1 ] ×10 17

AT2023fhn Sky
Spectrum
BB fit

3500 4000 4500 5000 5500 6000 6500 7000 7500
Wavelength [Å]

0

1

2

3

F
 [e

rg
 s

1  c
m

2  Å
1 ] ×10 17

Satellite OIIIH H Spectrum
Sky

Figure 3. Upper panel: the background-subtracted spectrum of AT 2023fhn
obtained with Gemini/GMOS-S on 22/23 Apr 2023,∼10 rest-frame days post-
discovery, and shifted into the transient rest-frame. A black-body fit returns
𝑇 = 24.8+2.4

−2.3 ×103 K. Background traces are shown in grey. Lower panel: a
spectrum of the satellite galaxy. A robust detection of the H𝛼 emission line
at 𝑧 = 0.238 ± 0.004 confirms an association with the adjacent spiral.

the satellite, plausibly a tidal stream. The surface brightness near the
transient location (measured in a 1 arcsec radius around AT 2023fhn)
is 25.2 mag arcsec−2 in F555W and 24.6 mag arcsec−2 in F814W.

3.2 Gemini spectroscopy

We obtained two epochs of Gemini/GMOS-S spectroscopy on 22/23
Apr 2023 and 12 May 2023,∼10 and∼26 days post discovery respec-
tively (PI: Chrimes, programme GS-2023A-DD-102). The first epoch
consisted of 4×500s exposures with the R400 grating, 1 arcsec slit
width and two central wavelengths (two exposures at 520 nm and two
at 565 nm). The second epoch consisted of 4×1845s exposures with
the R400 grating, 1 arcsec slit and central wavelength 675 nm. Data
reduction was performed using the python package dragons (Labrie
et al. 2019). Associated arcs, flats and bias frames were taken as part
of the programme. Sky lines and unusable regions (e.g. due to the am-
plifier 5 failure5) are manually masked. We bin the pixels by a factor
of 6 along the wavelength axis to increase the signal-to-noise ratio,
and combine the 520 nm and 565 nm centred spectra by taking the

5 https://www.gemini.edu/node/21963
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Figure 4. The cumulative offset and host-normalised offset distributions of a variety of transients, and the offset of AT 2023fhn from the spiral (thick black
vertical lines) and its satellite (narrow vertical lines) - solid lines represent F555W, dashed lines F814W. The four previous LFBOT offsets are from Prentice
et al. (2018, the Cow), Ho et al. (2020, the Koala), Coppejans et al. (2020, CSS161010) and Yao et al. (2022, AT 2020mrf). The comparison distributions are
from Blanchard et al. (2016); Lyman et al. (2017, LGRBs), Lunnan et al. (2015); Schulze et al. (2021, SLSNe), Kelly & Kirshner (2012); Schulze et al. (2021,
CCSNe), Bhandari et al. (2022, FRBs), Wang et al. (2013, type Ia SNe), Lunnan et al. (2017); De et al. (2020, Ca-rich SNe) and Fong et al. (2022, SGRBs).
Also shown is the globular cluster (GC) offset distribution around M81 (Lomelí-Núñez et al. 2022).

mean where they overlap. We correct for Galactic extinction by adopt-
ing 𝐸 (𝐵 − 𝑉) = 0.025 (Schlafly & Finkbeiner 2011), and calculate
the extinction at each wavelength with the python extinction (Bar-
bary 2016) module assuming 𝑅V = 3.1. For flux calibration, spectro-
photometric standard stars observed with the closest-matching set-up
were found in the Gemini archive. For the 525 nm data we use spectra
of EG274 (programme GS-2023A-FT-205), for the 565 nm data we
use LTT6248 (GS-2022A-Q-315) and for the 675 nm data we use
LTT1020 (GS-2022B-Q-126). The final extinction-corrected spectra
are plotted in Figure 3.

In our first epoch of spectroscopy (22/23 Apr), AT 2023fhn is
detected as shown in Figure 3. Fitting a black-body to the Galac-
tic extinction-corrected, rest-frame spectrum yields a temperature of
24.8+2.4

−2.3 ×103 K (𝜒2
𝜈 = 3.66 with 282 degrees of freedom, where

uncertainties are derived from the local standard deviation of the
spectrum). This compares with a temperature of 17.5+1.2

−1.0 ×103 K
derived from FORS2 photometry taken on the following night (Wise
& Perley 2023). The large 𝜒2

𝜈 is likely due to correlated, systematic
errors (e.g. from imperfect flux calibration) that have not been ac-
counted for. A power-law produces a fit of similar quality - taking
F𝜆 ∝ 𝜈2−𝛽 , we find a best-fit power-law index 𝛽 = −1.24+0.06

−0.09,
with 𝜒2

𝜈 = 3.63. Nevertheless, temperatures of ∼20×103 K are
comparable to AT 2018cow, which had a black-body temperature
of 19.3+0.7

−0.8 ×103 K at a similar rest-frame epoch (Prentice et al.
2018). No correction for host-intrinsic extinction has been made,
however as revealed in the HST imaging, the transient appears to
be far away from any significant sources of dust, as it lies outside
the bulk of the optical light of both nearby galaxies. In the second
epoch of spectroscopy (12 May) the transient had faded sufficiently
to result in a non-detection, with an upper limit on H𝛼 emission at
its location (taking an aperture with the same radius as the seeing)
of < 1.2 × 10−16 erg s−1 cm−2. The slit was also placed on the edge
of the satellite galaxy. From the centroid and width of the H𝛼 line,
we derive a redshift 𝑧 = 0.238 ± 0.004, consistent with the spiral
redshift of ∼ 0.24 reported by Ho et al. (2023a), and backing up the
satellite interpretation for this galaxy. We have adopted 𝑧 = 0.238 for
all relevant calculations in this letter.

4 DISCUSSION

All published LFBOTS to date have occurred in star-forming dwarfs
(the Koala, CSS161010, the Camel, AT 2020mrf, Ho et al. 2020;
Coppejans et al. 2020; Perley et al. 2021; Yao et al. 2022) or spirals
(the Cow, Prentice et al. 2018; Lyman et al. 2020). AT 2023fhn also
has a star-forming host, assuming one of the spiral or dwarf (both
are strong H𝛼 emitters) is the galaxy of origin. However, in contrast
with LFBOTs so far, it lies far away from the bulk of the host light
for either choice of host galaxy. Such offsets are atypical for core-
collapse transients due to the short (10-100 Myr lifetimes) of the
progenitor stars. Figure 4 compares the physical projected offsets and
host-normalised offsets of a range of transients compiled from the
literature, including long gamma-ray bursts (LGRBs), short gamma-
ray bursts (SGRBs), superluminous supernovae (SLSNe), other core-
collapse supernovae (CCSNe), fast radio bursts (FRBs), Ca-rich and
type Ia SNe. The host offsets of four previous LFBOTs are also shown
(𝑟𝑛 values were not reported for these events). AT 2023fhn lies much
further out from its host than other LFBOTs to date. To quantify
this, we randomly draw 5 (the number of LFBOTs with host offset
measurements in Fig. 4) offsets from the Schulze et al. (2021) CCSN
distribution 104 times, and calculate the frequency with which at
least one of these lies at 5.35 (16.51) kpc or greater (for the satellite
and spiral respectively). For the satellite, this occurs in 85 per cent
of random draws, for the spiral it occurs in 13 per cent. In terms of
host-normalised offset, only ∼1 per cent of CCSNe occur at higher
offsets than AT 2023fhn. In all 4 combinations of filter and galaxy
choice, the transient lies outside the pixels selected as associated
with the galaxies, therefore (by definition) the transient will have a
fraction of light (Fruchter et al. 2006) value Flight = 0 in both filters.
This is unlikely but not unprecedented for core-collapse events; a few
per cent of CCSN have Flight = 0 (Svensson et al. 2010). Therefore,
a core-collapse origin cannot be ruled out.

If originating at a lower offset, time-of-travel arguments require
a massive star with velocity ≳50/350 km s−1 for the spiral/satellite,
assuming a long-lived 100 Myr-old progenitor (Eldridge et al. 2019)
and an origin at ∼r50. Only a small fraction of massive stars have
such high velocities (e.g. Portegies Zwart 2000; de Wit et al. 2005;
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Eldridge et al. 2011; Renzo et al. 2019; Chrimes et al. 2023). The
delayed mergers of compact objects can also achieve high offsets (i.e.
SGRBs), but the luminosity, spectra and rapid evolution of LFBOTs
effectively rule out an association with even the most extreme of these
transients (e.g. Kann et al. 2011; Sarin et al. 2022). Since no spectro-
scopic redshift for the transient has been measured, we consider the
probability of a chance alignment Pchance between AT 2023fhn and
the two galaxies (following Bloom et al. 2002; Berger 2010). Pchance
is calculated using SDSS DR16 𝑟-band magnitudes for the spiral
and satellite, which are 18.94 ± 0.02 and 22.61 ± 0.14, respectively.
For the spiral we find Pchance = 0.78 per cent, and for the satellite
Pchance = 1.38 per cent. Therefore, AT 2023fhn is likely associated
with one of the two galaxies. As shown in the inset panels of Figure
1, the progenitor may have originated in a faint tidal stream or spiral
arm. Based on our early-time radio and H𝛼 upper limits (Sections
2 and 3.2), and using the star formation rate (SFR) calibrations of
Murphy et al. (2011), we derive 3𝜎 upper limits on the underlying
SFR at the location of AT 2023fhn of ∼6 M⊙yr−1 (at 6.05 GHz, the
strongest radio constraint) and∼0.1 M⊙yr−1 (H𝛼). The F555W (rest-
frame∼B-band) surface brightness of 25.2 mag arcsec−2 (Sec. 3.1.3)
is among the faintest ∼2 per cent of (𝑢-band) local surface bright-
nesses for CCSNe (Kelly & Kirshner 2012). Unless the population is
extremely young, adjusting for the 𝐵-band/𝑢-band discrepancy would
give an even fainter surface brightness (due to lower flux blue-wards
of the Balmer break). An IMBH TDE explanation requires an un-
derlying cluster, since a dense stellar environment is necessary to
make encounters likely (e.g. Ye et al. 2023). As shown in Section
3.1.3, a cluster at the location of AT 2023fhn cannot be ruled out.
At 𝑧 ∼ 0.24, even the brightest and largest globular clusters (GCs)
would have optical apparent magnitudes of ∼30 - far fainter than
the source in the HST images - and angular extents too small to be
resolved (Harris 2010). Finally, we compare the offset of AT 2023fhn
from the spiral with the distribution of GCs around M81 (which has a
similar physical size and morphology), using the Sérsic distribution
of Lomelí-Núñez et al. (2022) (see also Perelmuter & Racine 1995).
The GC offsets, and distribution normalised by the F555W half-light
radius of the spiral, are shown in Figure 4. Only 0.5 per cent of GCs
occur at the offset of AT 2023fhn or higher. While unlikely based on
this statistic, the lack of strong photometric constraints mean that an
origin in a globular cluster is also not ruled out.

5 CONCLUSIONS

In this letter, we have presented HST, Gemini, Chandra and VLA
observations of AT 2023fhn, the first LFBOT to lie at a large offset
from its host galaxy. Although the location is more representative of
other transient types, given the offset, local surface brightness, limit
on star-formation and constraints on an underlying cluster, we cannot
rule out a massive star progenitor. Likewise, a tidal disruption event
in a unseen cluster cannot be ruled out. Environmental studies are
needed for a population of LFBOTs to determine if AT 2023fhn is
a significant outlier. Late-time imaging will put further constraints
on the underlying stellar population, while detailed modelling of the
spectra and multi-wavelength light-curve is needed to reveal more
about the origin of this enigmatic transient.
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