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ABSTRACT

Recent high-resolution direct imaging observations have revealed spiral structure in protoplanetary
disks. Previous studies have suggested that planet-induced spiral arms cannot explain these spiral
patterns, as 1) the pitch angle of the spiral arm is larger in observations than that predicted by the
linear density wave theory, 2) the contrast of the spiral arm is higher in observations than suggested
by the synthetic observations based on two dimensional planet-disk simulations. We have carried out
three dimensional (3-D) hydrodynamical simulations to study spiral wakes/shocks excited by young
planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on
the planet mass, which can be explained by the non-linear density wave theory. The more massive is
the planet, the larger pitch angle the spiral arm has, since a more massive planet excites a stronger
shock which propagates considerably faster than the sound speed. A secondary spiral arm, especially
for the inner arms, is also excited by a massive planet. The more massive is the planet, the larger
is the separation in the azimuthal direction between the primary and secondary arms. We also find
that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have
significant vertical motion, which boosts the density perturbation at the disk atmosphere by more
than a factor of 10 compared with that at the disk midplane. Combining hydrodynamical models
with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably
more prominent in synthetic near-IR images using full 3-D hydrodynamical models than images based
on 2-D models assuming vertical hydrostatic equilibrium, indicating the need to model observations
with full 3-D hydrodynamics. Overall, spiral arms (especially inner arms) excited by planetary-mass
objects are prominent features that are observable by current near-IR imaging facilities, and the shape
of the spiral arms informs us not only about the position but also about the mass of the companion.
Subject headings: accretion, accretion disks - planet-disk interaction - protoplanetary disks - stars:

protostars

1. INTRODUCTION

Recent high-resolution direct imaging observations
have revealed spiral structure in several protoplanetary
disks around Herbig Ae/Be stars, such as SAO 206462
(Muto et al. 2012; Garufi et al. 2013) and MWC 758
(Grady et al. 2013; Benisty et al. 2015). The polarized
intensity has been measured in these observations to gain
higher contrast between the disk and the central star.
While the thermal emission from the central star is unpo-
larized, the scattered light from the disk is polarized. In
these near-infrared (near-IR) polarized intensity images,
two spiral arms with roughly 180o rotational symmetry
are normally present, similar to the grand design in a spi-
ral galaxy (e.g. the Whirlpool Galaxy M51). The spiral
arms also exhibit a high contrast against the background
disk. The polarized intensity of the spiral arm is several
times higher than that of the region outside the spiral
arm. It should also be noted that, since the dust scatter-
ing opacity is quite large, these observations only probe
structure high up at the disk atmosphere (e.g. several
disk scale heights) where the last dust scattering surface
is.
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In addition to spiral patterns, these disks also have
gaps or holes, which indicates they are members of the
protoplanetary disk class called transitional disks (Es-
paillat et al. 2014). One scenario to explain both spi-
ral patterns and gaps/holes is that these disks harbor
low-mass companions (e.g. young planets) which can
open gaps and excite spiral waves at the same time (e.g.,
Baruteau et al. 2014).
However, there are two di�culties in explaining the ob-

served spiral patterns using planet-induced spiral wakes.
First, the large pitch angle of the observed spiral arms
suggests that the disk has a relative high temperature
(⇠250 K at 70 AU, Benisty et al. 2015). In linear the-
ory, spiral waves are basically sound waves in disks, and
the pitch angle of the spiral arms is directly related to
the sound speed in the disk. Using the linear theory, the
best fit models for both SAO 206462 (Muto et al. 2012)
and MWC 758 (Grady et al. 2013; Benisty et al. 2015)
suggest that the disk aspect ratio (H/R with H ⌘ c

s

/⌦)
at R ⇠ 100 AU is around 0.2 which is too large for any
realistic disk structure. For example, even if the stellar ir-
radiation is perpendicular to the disk surface 5, the max-
imum disk temperature due to the stellar irradiation is
�T (R)4 = L⇤/4⇡R2. Assuming a 2 M� central star with
10 L� luminosity, the maximum temperature is ⇠70 K at

100 AU and H/R is only ⇠0.1. Since H/R / L
1/8
⇤ based

on above relations, it is very di�cult to make H/R ⇠0.2.

5 In reality, the stellar irradiation to the disk is not that e�cient
since the light from the star impinges very obliquely on the disk.
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Second, the observed spiral arms exhibit much higher
brightness contrasts than suggested by the synthetic ob-
servations based on two dimensional (2-D) planet-disk
simulations. Juhász et al. (2015) have calculated the po-
larized scattered light images by combining 2-D hydro-
dynamical simulations with 3-D Monte-Carlo radiative
transfer (MCRT) simulations. Vertical hydrostatic equi-
librium has been assumed to extend the 2-D simulation
to the third dimension (the vertical direction). They find
that a relative change of about 3.5 on the spiral arms in
the surface density is required for the spirals to be de-
tectable. This value is a factor of eight higher than what
is seen in their hydrodynamical simulations.
In this paper, we first point out that the pitch angle for-

mula derived from the linear theory, which has been used
in almost all previous spiral arm modeling e↵orts, does
not apply to the high planet mass cases. Spiral wakes
that are excited by high mass planets (e.g. 1 M

J

) be-
come spiral shocks which propagate at speeds faster than
the local sound speed. The pitch angle di�culty above
can be alleviated by considering the non-linear exten-
sion of the spiral shock theory. We also show that spiral
arms (especially the inner arms) have complicated non-
hydrostatic 3-D structure. Such structure can lead to
strong density perturbation at the disk surface resulting
in a corrugated shape of its atmosphere. Since near-IR
observations only probe the shape of disk surface, this
e↵ect alleviates the second di�culty mentioned above.
In Dong et al. (2015), we have combined MCRT simula-
tions with hydrodynamical simulations from this paper
and demonstrated that planet-induced inner spiral arms
can explain recent near-IR direct imaging observations
of SAO 206462 and MWC 758.
Before we introduce our numerical method in §3, we

provide the theoretical background in §2. The shape of
the spiral wakes will be studied in §4, and their 3-D struc-
ture will be presented in §5. After a short discussion in
§6, we summarize our results in §7.

2. THEORETICAL BACKGROUND

As a result of planet-disk interaction, a spiral arm
forms due to the constructive interference of density
wakes with di↵erent azimuthal wavenumbers m excited
by the planet at Lindblad resonances. In the linear den-
sity wave theory, the m-th Fourier component of the
planet potential excites the density wave having m spiral
arms

�(R,�, t) = �0(R)ei[
R
kR(R)dR+m(��⌦pt)] (1)

where � is any perturbed quantity associated with the
wave, �0(R) is its complex amplitude, k

R

(R) is the ra-
dial wave vector, and ⌦

p

is the planet orbital frequency.
Thus, the wave has the same phase along the curve sat-
isfying dR/d� = �m/k

R

(R). The pitch angle (�) of
the equal phase curve satisfies tan� = |dR/(Rd�)|, so
�=tan�1

|m/[k
R

(R)R]|. Using the dispersion relation-
ship for density waves in the large m limit and far from
the launching point, m2(⌦(R) � ⌦

p

)2 ⇡ c2
s

k
R

(R)2, we
have �=tan�1[c

s

/(R|⌦(R)�⌦
p

|)]. Because � is indepen-
dent of m, di↵erent m modes can constructively interfere
to form the one armed spiral wake (Ogilvie & Lubow
2002). If the equal phase curve is integrated from the
planet’s position (R

p

, �
p

), the shape of the wake far from

R
p

is given by Rafikov (2002) and Muto et al. (2012) as

�(R)=�
p

�

sgn(R�R
p

)

h
p
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(2)

where h
p

= H/R is the disk aspect ratio at R
p

.
However, when the planet is massive enough, the above

linear density wave theory breaks down. Linear waves
excited by planets will steepen to shocks (Goodman &
Rafikov 2001, Rafikov 2002, Dong, Rafikov & Stone 2012,
Du↵ell & MacFadyen 2012, Zhu et al. 2013) after they
propagate over a distance

|x
sh

| ⇡ 0.93

✓
� + 1

12/5

M
p

M
th

◆�2/5

H . (3)

where � is the adiabatic index, and M
th

is the disk ther-
mal mass

M
th

⌘

c3
s

G⌦
p

⇡ 1M
J

✓
h
p

0.1

◆3 ✓
M⇤
M�

◆
. (4)

When M
p

> M
th

, the spiral waves will immediately be-
come spiral shocks after they are excited around the
planet. Unlike the linear wake which follows Equation
(2), the spiral shock will expand away from the trajec-
tory predicted by Equation (2). Thus, if there is a mas-
sive planet in the disk, using Equation (2) to fit the shape
of the spiral shocks will predict an incorrect disk aspect
ratio and temperature.

3. NUMERICAL SIMULATIONS

3.1. Method

To study density wakes/shocks excited by planets, we
have carried out both 2-D and 3-D numerical simula-
tions using Athena++. Athena++ is a newly developed
grid based code using a higher-order Godunov scheme for
MHD and the constrained transport (CT) to conserve
the divergence-free property for magnetic fields (Stone
2015). Compared with its predecessor Athena (Gardiner
& Stone 2005, 2008; Stone et al. 2008), Athena++ is
highly optimized and uses flexible grid structures, al-
lowing global numerical simulations spanning a large ra-
dial range. Furthermore, the geometric source terms in
curvilinear coordinates (e.g. in cylindrical and spherical
coordinates) are carefully implemented so that angular
momentum is conserved exactly (to machine precision),
which makes the code ideal for global disk simulations.
Our simulations use the adiabatic equation of state

(EoS) with the adiabatic index �=1.4. A simple orbital
cooling scheme has been applied to mimic the radiative
cooling process in disks. In 3-D simulations, we have
adopted

dE

dt
=

E � c
v

⇢T
irr

t
cool

, (5)

where E is the internal energy per unit volume, while in
2-D simulations, we have adopted

dE

dt
=

E � c
v

⌃T
irr

t
cool

(6)
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where E is the internal energy per unit area. c
v

⌘

k/(µm
u

(��1)) is the heat capacity per unit mass, k is the
Boltzmann constant, µ is the mean molecular weight, and
m

u

is the atomic mass unit. The cooling time t
cool

can be
written in the dimensionless form as T

cool

= t
cool

⌦(R).
We fix T

cool

to be a constant in each simulation. With
this scheme, the disk temperature is relaxed to the back-
ground disk temperature (T

irr

) determined by stellar ir-
radiation. In our simulations, T

irr

is set to be the initial
disk temperature. In a realistic disk, the radiative cool-
ing rate per unit area can be approximated by (Hubeny
1990)

dE

dt
=

16

3
�(T 4

c

� T 4
irr

)
⌧

1 + ⌧2
, (7)

where � is the Stefan-Boltzmann constant, ⌧ = (⌃/2)
R

is the optical depth in the vertical direction, 
R

is the
Rosseland mean opacity, and T

c

is the midplane temper-
ature. Assuming E = c

v

⌃T
c

and using Equations (6)
and (7), we can derive

t
cool

=
3⌃c

v

16�(T 2
c

+ T 2
irr

)(T
c

+ T
irr

)

1 + ⌧2

⌧
. (8)

Approximating the polynomial of T
c

and T
irr

in the de-
nominator of Equation 8 with [max(T

c

, T
irr

)]3 and as-
suming the central star is 1 M�, we have

T
cool

=0.002

✓
⌃

10gcm�2

◆✓
100AU

R

◆1.5 (60K)3

[max(T
c

, T
irr

)]3

⇥

1 + ⌧2

⌧
(9)

We have carried out three sets of simulations with
T
cool

= 10�5, 1, and 100. They are respectively labeled
as ISO, T1, T2 at the end of their names in Table 1.
Simulations with fast cooling (T

cool

= 10�5) are equiva-
lent to locally isothermal simulations. Thus, we refer to
these simulations as isothermal simulations in the rest of
the paper. When the disk has a large surface density and
⌧ � 1 (e.g. at 1 AU), T

cool

can increase dramatically.
Thus we have carried out simulations with T

cool

= 1 and
100. Results from simulations with T

cool

= 100 are qual-
itatively similar to those with T

cool

= 1. Thus, in most
part of the paper, we only show results with T

cool

= 10�5

and 1.
We have also varied the planet mass to be 0.01, 1,

and 6 M
J

in our main set of simulations, which are la-
beled as M1, M2, and M3 in their names respectively.
The thermal mass for the h = 0.1 disk around the so-
lar mass star is ⇠ M

J

. Thus, waves excited by a 0.01
M

J

planet are in the linear regime and waves from a 6
M

J

planet are in the highly non-linear regime. To com-
pare with Figure 2 in Tanaka et al. (2002), we have also
carried out a thin disk simulation with H

p

/R
p

= 10�1.5

(STHIN in Table 1). The thermal mass for such a thin
disk is only M

th

=0.0316 M
J

. Thus, in order to ensure
that the waves are in the linear regime, we choose the
planet mass of 0.01M

th

= 3.16 ⇥ 10�4M
J

in this thin
disk simulation. To avoid the divergence of planet po-
tential, a smoothing length of 0.1 R

p

has been applied
for M2 and M3 cases. For the thin disk case which has a
very small mass planet, we choose a smoothing length of
6⇥10�3R

p

, roughly the length of two grid cells. For the

TABLE 1
Models

2-D
Run M

p

T
cool

Domain Resolution
M

J

R R⇥ �
CM1ISO 0.01 10�5 [0.2,10] 1280⇥2048
CM1T1 0.01 1 [0.2,10] 1280⇥2048

CM1T100 0.01 100 [0.2,10] 1280⇥2048
CM2ISO 1 10�5 [0.2,10] 1280⇥2048
CM2T1 1 1 [0.2,10] 1280⇥2048

CM2T100 1 100 [0.2,10] 1280⇥2048
CM3ISO 6 10�5 [0.2,10] 1280⇥2048
CM3T1 6 1 [0.2,10] 1280⇥2048

CM3T100 6 100 [0.2,10] 1280⇥2048
3-D
Run M

p

T
cool

Domain Resolution
M

J

r ⇥ ✓ r ⇥ ✓ ⇥ �
STHIN 0.000316 10�5 [0.5,2]⇥[⇡2 -0.2,

⇡

2+0.2] 456⇥128⇥2048
SM1ISO 0.01 10�5 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM1T1 0.01 1 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM1T100 0.01 100 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM2ISO 1 10�5 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM2T1 1 1 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM2T100 1 100 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM3ISO 6 10�5 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM3T1 6 1 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688
SM3T100 6 100 [0.3,3]⇥[⇡2 -0.6,

⇡

2+0.6] 256⇥128⇥688

low mass planet cases (M1), a smoothing length of 0.02
R

p

, which is also roughly the length of two grid cells in
these simulations, has been adopted. Planets are fixed
in circular orbits at R = 1, and the indirect potential,
which is due to the center of the coordinate system is
at the star instead of the center of the mass, has been
included. We have run the simulations for 10 planetary
orbits. We choose this timescale because it is longer than
the sound crossing time throughout the whole disk so
that density waves/shocks have established, while it is
shorter than the gap opening timescale to avoid com-
plicated gap structures (e.g. vortices at the gap edges)
and other longterm e↵ects (e.g. radial buoyancy waves,
Richert et al. 2015). Despite the short timescale of the
simulation, the revealed wave mechanics should still hold
in long terms, except that the wave amplitudes may de-
crease when gaps are carved out. Constant ↵ viscosity
with ↵ = 10�4 has been applied. At inner and outer
boundaries, all quantities are fixed at the initial states.

3.2. 2-D simulations

Compared with the 3-D simulations in the next sub-
section, 2-D simulations allow us to study density wakes
in a bigger domain using a higher numerical resolution.
The initial radial profile of the disk is

⌃(R,�) = ⌃0

✓
R

R0

◆�1

(10)

T (R,�) = T0

✓
R

R0

◆�1/2

. (11)

We choose ⌃0 = 1, R0 = 1, and T0 = 0.01 to make
(H/R)

R=1 = 0.1.
Cylindrical coordinates have been adopted. To make

every grid cell have equal length in the radial and az-
imuthal direction throughout the whole domain, the
grids are uniformly spaced in log(R) from R =0.2 to 10,
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and uniformly spaced from 0 to 2⇡ in the � direction.
Our standard resolution is 1280 in the R direction and
2048 in the � direction, which is equivalent to 32 grids
per H at R = 1 in both directions. In Table 1, 2-D runs
are denoted with a “C” (cylindrical) in front of the model
names, while 3-D runs are denoted with a “S” (spherical)
in front of the model names.

3.3. 3-D simulations

To study the 3-D structure of density wakes/shocks,
we have run 3-D hydrodynamical simulations in spherical
polar coordinates. The initial density profile of the disk
at the disk midplane is

⇢(R, z = 0) = ⇢0

✓
R

R0

◆
p

, (12)

and the temperature is constant on cylinders

T (R, z) = T0

✓
R

R0

◆
q

. (13)

We want to emphasize that R should not be confused
with r. In this paper, we use (R, �, z) to represent po-
sitions in cylindrical coordinates while using (r, ✓, �) for
spherical polar coordinates. � represents the azimuthal
direction (the direction of disk rotation) in both coordi-
nate systems. Considering the disk structure is more nat-
ural to be described in cylindrical coordinates, we have
transformed 3-D simulation results from spherical polar
coordinates to cylindrical coordinates. Most results pre-
sented below are plotted in cylindrical coordinates with
R representing the distance to the axis of the disk, even
though the simulations are carried out in spherical polar
coordinates.
Hydrostatic equilibrium in the r�✓ plane requires that

(e.g. Nelson et al. 2013)

⇢(R, z) = ⇢0

✓
R

R0

◆
p

exp


GM

c2
s

✓
1

p

R2 + z2
�

1

R

◆�
,

(14)
and

⌦(R, z) = ⌦
K

"
(p+ q)

✓
H

R

◆2

+ (1 + q)�
qR

p

R2 + z2

#1/2

,

(15)
where c

s

=
p
p/⇢ is the isothermal sound speed at R,

⌦
K

=
p
GM⇤/R3, and H = c

s

/⌦
K

as defined before.
We choose p = �2.25 and q = �1/2 so that ⌃ /

R�1, similar to 2-D simulations above. H/R is 0.1 at
R=1. The grids are uniformly spaced in log(r), ✓, �
with 256⇥128⇥688 grid cells in the domain of [log(0.3),
log(3)]⇥[⇡/2-0.6, ⇡/2+0.6 ]⇥[0, 2⇡] for the main sets of
simulations. In runs with T

cool

= 1 and 100, the cool-
ing time decreases exponentially beyond z = 3H with
T
cool

(z) = T
cool

exp(�(z2/H2
� 32)) to mimic fast cool-

ing at the disk surface. Numerically, this treatment also
maintains better hydrostatic equilibrium at the disk sur-
face.
The boundary condition in the ✓ direction is chosen

that v
r

= v
✓

= 0 in the ghost zones. We set v
�

and T in
the ghost zones having the same values as the last active

zones. Density in the ghost zones is set to be

⇢(✓
g

) = ⇢(✓
a

)

����
sin(✓

g

)

sin(✓
a

)

����
v

2
�/T

(16)

to maintain hydrostatic equilibrium in the ✓ direction,
where ✓

g

and ✓
a

are the ✓ coordinates of the ghost and
last active zones.
Volume rendering of �⇢/⇢0 in simulation SM1ISO is

shown in Figure 1. �⇢ is the density di↵erence between
10 orbits and the initial condition, and ⇢0 is the initial
density at that position. Thus, �⇢/⇢0 highlights the den-
sity perturbation (e.g. spiral shocks) in the disk. In this
paper, we use “spiral shocks” to refer to peaks of the
density wakes and are associated with spiral arms seen
in observations. It is apparent that the spiral shocks are
not perpendicular to the disk midplane and they have
complicated 3-D structure. Both the inner arms inside
the planet and the outer arms outside the planet curl
towards the central star at higher altitudes.
Such curled shocks in Figure 1, which are almost

aligned with the ✓ direction in the spherical polar grid,
make us suspect that they could be numerical artifacts
due to the adopted grid structure. Thus, we have used
Athena to carry out the same simulation but in cylindri-
cal coordinates. We find the same curled shock struc-
ture in the Athena simulation. We have also calcu-
lated the eigenmodes from the Athena simulation using
cylindrical grids and compare them with the eigenmodes
from Athena++ simulations using spherical polar grids
that will be presented in §5. Good agreements between
Athena and Athena++ simulations have been achieved.
This confirmation using another code with a di↵erent
grid structure makes us confident that the results pre-
sented in this paper are robust.

4. THE SHAPE OF SPIRAL WAKES

When a very low mass planet is present in a disk, it
excites density waves that are in the linear regime. The
2-D linear theory (Equation 2) can accurately describe
the shape of the excited spiral wakes in 2-D simulations.
This is demonstrated in the upper left panel (CM1ISO)
of Figure 2 where Equation (2) fits the peak of the density
wakes very well6. Even at the midplane of 3-D simula-
tions, Equation (2) still provides a good fit to the density
wakes (the upper middle panel).
However, the shape of the spiral arms at the disk sur-

face is a↵ected by the 3-D structure of density wakes.
At the disk surface in 3-D simulations (even in the linear
regime, shown in the upper right panel of Figure 2), both
inner and outer arms are at smaller R than Equation (2)
due to the tilted shock shape in Figure 1. When these
shocks are far away from the planet, they are more tilted
towards the central star at higher altitudes. This leads to
the inner spiral arms becoming slightly more open (with
a larger pitch angle) and the outer spiral arms becom-
ing slightly less open (with a smaller pitch angle) than
Equation (2) would predict.
When the planet has a mass larger than M

th

(mid-
dle and bottom panels of Figure 2), it can launch spiral

6 Strictly speaking, even with M
p

= 0.01M
J

the excited density
wakes become weak shocks at R = 0.4 and 1.6 according to Equa-
tion (3). But the shocks are very weak and do not move away from
the trajectory predicted by Equation (2) significantly.
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Fig. 1.— Volume rendering of �⇢/⇢0 for SM1ISO. The disk has been sliced through the midplane and meridian plane to show the 3-D
shock structure. Spiral shocks have been excited by the planet, and the shocks curl towards the central star at the disk surface.

Fig. 2.— �⇢/⇢0 for CM1ISO, CM2ISO, CM3ISO (left panels), and SM1ISO, SM2ISO, SM3ISO at the disk midplane (middle panels) and
z = 3H (right panels). The black dotted curves are the spiral wakes from linear theory (Equation 2). When the planet is more massive,
the spiral shocks have larger deviations from the prediction of linear theory. Due to the 3-D structure of the shocks, the inner spiral shocks
become more open and the outer shocks become less open at z = 3H compared with the shocks at the midplane. The color bar is uniform
but it has di↵erent scale in each plot to highlight the shock structure.

shocks immediately around the planet, and the shape of
spiral shocks can deviate from the trajectory predicted
by Equation (2) significantly. Shocks excited by a more
massive planet deviate from linear theory more and their

pitch angles are larger. As shown in Figure 2), spiral
shocks in the 6 M

J

cases (bottom panels) are more open
and deviate from the prediction of linear theory (dotted
curves) more than shocks in the 1 M

J

cases (middle pan-
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els). The deviation from the linear theory has also been
seen in previous simulations, e.g., Figure 2 and 10 of de
Val-Borro et al. (2006), but it has not been explored
and the physical reason for the deviation is left to be
unexplained.
This deviation from linear theory shown in Figure 2

is consistent with the predictions from the weakly non-
linear density wave theory by Goodman & Rafikov (2001)
and Rafikov (2002). In weakly non-linear theory, the spi-
ral shock can expand in both azimuthal directions away
from Equation (2), and, at each radius, the shock density
profile along the azimuthal direction is N-shaped (Figure
2 in Goodman & Rafikov 2001). The N-shaped shock
profile expands in the azimuthal direction at a speed
which is proportional to the normalized amplitude of the
shock ((⌃

shock

�⌃0)/⌃0). Thus, the higher is the planet
mass, the stronger are the shocks and these shocks ex-
pand faster away from Equation (2). Then, the spiral
shock has a larger pitch angle as a result.
Similar to the 0.01 M

J

case, the inner spiral shocks
are even more open at z = 3H than at the midplane,
while the outer arms become less open at the disk sur-
face. For outer spiral arms, this 3-D e↵ect compensates
the increased pitch angel due to the shock expansion,
and coincidently the outer arms almost overlap with the
prediction from linear theory.
Another important feature shown in Figure 2 is that,

besides the primary inner arm which originates from the
planet, a secondary inner spiral arm appears with some
azimuthal shift from the primary arm. This two spiral
arm structure has also been seen in previous simulations
having massive planets, e.g. Figure 2 in Kley (1999) and
Figure 10 of de Val-Borro et al. (2006). However, it
has hardly been explored in earlier simulations. Figure
2 shows that, even with a very low mass planet (0.01
M

J

, the upper panels of Figure 2), another density peak
(the secondary arm) emerges close to the primary in-
ner arm with low density region (the rarefaction wave of
the primary arm) in between. After the secondary arm
is excited, it can become shock during the propagation
and later it will become N-shaped which is similar to the
primary arm. For 0.01 M

J

cases, the primary and sec-
ondary arms are separated by �� ⇠ 1 at R = 0.3. When
the planet gets more massive, the secondary arm is ex-
cited earlier and the separation between the primary and
secondary arm increases. In 1 M

J

cases, the two inner
arms are roughly separated by �� ⇠ 2, and in 6M

J

cases,
the two arms are roughly separated by �� ⇠ 3. This has
an important application that we can use the separation
between two arms to estimate the mass of the embedded
planet. The secondary arms also have 3-D structure,
they seem to be stronger and closer to the planet at the
disk surface. For outer arms, the secondary arm also ap-
pears in disks having a massive planet, but the secondary
outer arm is less apparent than the primary outer arm.
More discussions on the 3-D structure of secondary arms
will be presented in §5.
Spiral wakes/shocks are slightly more open in a disk

whose EoS is not isothermal (Figure 3). This is because
density waves propagate slightly faster in a fluid with a
non-isothermal EoS than in a fluid at the same temper-
ature with the isothermal EoS. In Figure 3, even with
a moderate cooling rate (T

cool

= 1), the spiral wakes
excited by a low mass planet (0.01 M

J

) can only be

fitted by Equation (2) with a larger disk scale height
that is calculated with the adiabatic sound speed in-
stead of the isothermal sound speed (h

p

= c
s,adi

/R⌦ =
p

�c
s,iso

/R⌦). Other aspects of the spiral shocks in non-
isothermal cases are similar to the isothermal cases, e.g.,
a higher mass planet excites a more open spiral shock,
and the inner spiral shocks become slightly more open at
higher altitudes.
To illustrate the shape of the spiral shocks in the phys-

ical space, we plot the relative density perturbation in
Cartesian coordinates in Figure 4. Clearly, the more
massive the planet is, the more the spiral shocks devi-
ate from linear theory. Two well separated inner arms
are also apparent when the planet mass is large, and the
separation between these two arms is larger when the
planet is more massive (comparing the middle and bot-
tom panels in Figure 4).
To see how successful the weakly non-linear density

wave theory of Goodman & Rafikov (2001) and Rafikov
(2002) fits the shape of the shocks in simulations, we
plot in Figure 5 the density profiles along the azimuthal
direction at R = 0.3, 0.5, 1.5 and 2 for run CM1ISO. Fol-
lowing Goodman & Rafikov (2001) and Rafikov (2002),
the density profiles have been shifted so that �0 = 0 cor-
responds to the wake position from linear theory (black
curve in Figure 5 or Equation 2). The density profiles
clearly show that the shocks are N-shaped. A rarefac-
tion wave follows the shock front and the �⇢ there can be
negative before it merges to the background flow. The
shock fronts deviate from �0 = 0, and due to the shock
expansion, the deviation is larger when the shock is fur-
ther away from the planet. In the shearing-sheet approx-
imation, the amplitude and width of the N-shaped shock
scale as |R � R

p

|

�5/4 and |R � R
p

|

5/4 at |R � R
p

| �0
based on the weakly non-linear density wave theory of
Goodman & Rafikov (2001). In a global disk spanning a
range of radii, the amplitude and width of the N-shaped
shock scale as t�1/2 and t1/2, where t is given in Equa-
tion 43 of Rafikov (2002). For our disk parameters, we
have

t /

�����

Z
R/Rp

1
|s3/2 � 1|3/2s�13/8ds

����� . (17)

Thus, we expect that in our global simulations the az-
imuthal deviation of the shock front7 from the path pre-
dicted by Equation 2 should also scales as t1/2.
To test this prediction, we have measured the shock

positions at R = 0.5 and 1.5 in Figure 5, which are
�0 = �0.9 and 0.43 respectively. These two positions
are labeled as the dashed lines in R = 0.5 and 1.5 pan-
els. Then we calculate the shock positions at R = 0.3
and 2 to be -1.7 and 0.9, using their positions at R = 0.5
and 1.5 together with the scaling relationship t1/2 where
t at R=0.3, 0.5, 1.5, and 2 are calculated from Equa-
tion 17. These predicted shock positions are labeled as
the dashed lines in R = 0.3 and 2 panels. We can see
that they agree with the actual shock positions in the
simulation very well. This confirms that the shock posi-
tions are determined by the non-linear expansion of spiral
shocks. Using the same approach, we have calculated the

7 In non-linear theory, the middle point of the N-shaped shock
is not exactly at �0=0 but it is close to �0=0.
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Fig. 3.— The same as Figure 2 but for CM1T1, CM2T1, CM3T1 (left panels), and SM1T1, SM2T1, SM3T1. The black squared dots
represent the linear theory using isothermal sound speed while the black plus sign dots use the adiabatic sound speed.

Fig. 4.— The same as Figure 2 but in Cartesian coordinates.

non-linear shock position at every radius for R < 1 and
R > 1 with the normalization based on shock positions

at R = 0.5 and 1.5. This new predicted shock shape is
plotted as the dotted curve in the left panel of Figure
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Fig. 5.— �⇢/⇢0 for CM1ISO (left color panel) and density cuts across the � direction at R =0.5, 0.3, 1.5, and 2.0. The solid black curve
in the left color panel labels the shock position from linear theory (Equation 2). In the density cut plots, the density profile has been
shifted so that the shock position from linear theory is at �0 = 0. The dashed lines in R=0.5 and 1.5 plots label the shock fronts, while
the dashed lines in R=0.3 and 2 plots label the predicted shock fronts from weakly nonlinear theory. In the left color contour panel, the
predicted shock front from nonlinear theory is labeled as the dotted curve.

5. Despite some o↵set at R close to the planet, which is
expected since the simple relationship t�1/2 holds only
when |R�R

p

| �0, a good agreement has been achieved
between the non-linear density wave theory and the sim-
ulations. Note that in this comparison, we did not cal-
culate the shock strength directly from non-linear theory
and compare its amplitude with simulations, instead we
use the scaling relationship to verify the propagation of
the shock. In future, direct comparison is desired when
we have a better non-linear theory which can calculate
the shock excitation directly.
Although the primary arm can be fitted by the weakly

non-linear density wave theory, the excitation of the sec-
ondary arm still lacks a good theoretical explanation. It
may be related to the low m mode (e.g. m = 2, similar
to disks in binary systems) or some non-linear wave cou-
pling. Figure 5 suggests that a secondary spiral arm is
excited at the other end of the N-shaped primary shock
(the R = 0.5 panel). After it is excited, it steepens to
shocks and becomes another N-shaped shock later (the
R = 0.3 panel). Its shock front can even travel into the
rarefaction wave of the primary arm (e.g. in the R = 0.3
panel, the secondary shock is almost at �0=0 where the
rarefaction wave of the primary arm should reside.). Un-
like the primary arm which already dissipates when it

travels inward from R = 0.5 to 0.3, this secondary arm is
excited later and becomes stronger from R = 0.5 to 0.3.
At R = 0.3, the secondary arm is even stronger than
the primary arm. By comparing R = 0.5 and R = 0.3
panels, we also notice that the secondary arm almost
keeps the same azimuthal separation with the primary
arm (�✓0 ⇠1.7) during its propagation.

5. THE 3-D STRUCTURE OF SPIRAL WAKES

Since near-IR scattered light observations only probe
the shape of the disk surface, 3-D structure of spiral
shocks can a↵ect the observational signatures of these
spiral shocks. Intuitively, we would expect that the spiral
shocks have complicated 3-D structure. First, the wave
excitation must have 3-D structure since, at the same
R in the disk, the distance between the planet and the
disk surface is larger than the distance at the midplane,
and the force is thus weaker at the disk surface. Second,
the wave propagation may have 3-D structure consider-
ing the disk becomes thinner at smaller R. Waves/shocks
are more converged when they propagate inwards. They
can also channel to the disk surface (Lubow & Ogilvie
1998), and, during their propagation from the high den-
sity region (e.g., the midplane) to the low density re-
gion (e.g., the disk surface), the amplitudes of pertur-
bations have to increase to conserve the wave action.
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Fig. 6.— Waves excited on a 3-D disk by a low mass planet
in run SM1ISO (left panels) and STHIN (right panels). Density
perturbations with n=0,2, and 4 Hermite components for the m=10
Fourier mode are displayed. The real (imaginary) part of ⌘ is shown
with a dotted (solid) curve. Y-scales are di↵erent for di↵erent n
modes.

Since the amplitudes of perturbations determine when
the waves will break into shocks, the dissipation can also
be quite di↵erent between the surface and the midplane.
All these e↵ects can contribute to the 3-D structure of
spiral waves/shocks.
Due to these complicated e↵ects, it is di�cult to de-

velop an analytic theory to study the planet-induced 3-D
shock structure, and we rely on numerical simulations to
study such structure. However, before delving into the
highly nonlinear shock regime, we can use the linear the-
ory developed in Tanaka, Takeuchi & Ward (2002) to
estimate the 3-D e↵ect of the density waves. Following
their theory for locally isothermal disks, the structure of
the waves in the z direction can be studied with Her-
mite polynomials (H

n

(Z)). We first expand perturbed
quantities (⌘) from our simulations into Fourier series

⌘ =
X

m

Re
h
⌘
m

eim(��⌦pt)
i
, (18)

where the Fourier components ⌘
m

are complex functions
of R and z. Then, ⌘

m

can be further expanded with
Hermite polynomials in the z direction,

⌘ =
1X

m=0

1X

n=0

Re
h
⌘
m,n

H
n

(Z)eim(��⌦pt)
i
, (19)

where Z is the normalized height as Z = z/H(R), and
the first three Hermite polynomials are

H0(Z) = 1 , H1(Z) = Z , H2(Z) = Z2
� 1 . (20)

By using the normal orthogonal relation between H
n

, we
have

⌘
m,n

=
1

p

2⇡n!

Z 1

�1
e�Z

2
/2H

n

(Z)⌘
m

dZ . (21)

We can use ⌘
m,n

at di↵erent n to estimate the relative
importance of di↵erent Hermite components. To com-
pare with Figure 2 in Tanaka et al. (2002), we show
m = 10, n = 0, 2, 4 Fourier-Hermite components for the

perturbed density (�⇢/⇢0)8 in Figure 6. With the same
parameters, the right panel of Figure 6 is very similar to
Figure 2 in Tanaka et al. (2012). By comparing the right
and left panels of Figure 6, we find that the 3-D structure
is more significant in a thicker disk. The ratio between
the n=2 component and n=0 component is larger in a
thicker disk.
Figure 6 suggests that higher order vertical compo-

nents can dominate the disk structure at the atmosphere.
Although it shows that the n = 4 component is 10 times
weaker than the n = 2 component, and the n = 2 com-
ponent is 10 times weaker than the n = 0 component,
which led Tanaka et al. (2002) to conclude that most
of the angular momentum that is excited by the planet
will be carried by two dimensional free waves (n = 0), the
base function (Hermite polynomials) at z = 3H gets ⇠ 10
times larger sequentially fromH0 toH2 and toH4. Thus,
⌘10,2H2 and ⌘10,4H4 are still comparable with ⌘10,0H0.
The density structure at the disk atmosphere can be sig-
nificantly a↵ected by higher order vertical modes.

Fig. 7.— At the disk radius of R = 0.5, density profiles along
the azimuthal direction at the disk midplane (dotted curves) and
z = 3H (solid curves). Simulations with di↵erent planet masses
(di↵erent columns) and equations of state (upper panels: isother-
mal, bottom panels: adiabatic with T

cool

= 1) have been shown.

Although the modal analysis is useful to verify numeri-
cal simulations and can be suggestive on the relative am-
plitudes of various modes, it is the 3-D structure in the
real space that determines the observational signatures
of waves/shocks.
By studying the shock structure in real space, we first

find that the 3-D shock structure is dramatically di↵er-
ent between inner and outer arms. For the inner arms,
the density perturbation of the shock is much larger at
the disk surface than at the disk midplane. The 3-D
structure of the inner spiral arms at R = 0.5 is shown in
Figure 7. At R = 0.5 and z = 3H (solid curves), the dif-
ferences between the maximum and minimum density in
the logarithmic scale are 0.015, 0.4, and 1.3 for M1, M2,
and M3 cases respectively, in comparison with 0.004, 0.2,
and 0.4 at the disk midplane (dotted curves). The posi-
tion of the wakes in non-isothermal disks (lower panels)

8 Since the disk is isothermal locally, the density perturbation
is quite similar to the enthalpy perturbation, and can be compared
with Figure 2 in Tanaka et al. (2012).
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are at smaller �� �
p

compared with those in isothermal
disks (upper panels) at R = 0.5. As discussed in §4, this
is due to the faster sound speed in non-isothermal disks,
and the wakes are more open in these disks.

Fig. 8.— v
r

(left panels) and v
✓

(right panels) at z = 1H (dot-
ted curves) and 2H (solid curves) for SM1ISO (upper panels) and
SM1T1 (bottom panels). v

✓

is positive when the motion is towards
the disk surface.

The secondary inner spiral arms/shocks are also more
prominent at the disk surface than at the disk midplane.
At the disk midplane, the secondary arms have lower am-
plitudes compared with the primary arms (dotted curves
in Figure 7), while at z = 3H, the secondary arms have
almost the same amplitudes as the primary arms (solid
curves). The large amplitude of primary and secondary
inner arms at the disk surface is due to the corrugated
motion in the v

✓

direction. In Figure 7 which is in the
corotating frame with the planet, the disk material flows
in the direction from the left side to the right side of the
figure. Before meeting with the shock, the disk is in verti-
cal hydrostatic equilibrium with the background density
and v

✓

= 0 (Figure 8). After the shock, the disk ma-
terial loses angular momentum and moves inwards with
v
r

< 0 (Figure 8). At the same time, v
✓

also becomes
negative, compressing the disk material at the midplane.
This downward motion decreases the density of the rar-
efaction wave at z = 3H. Before meeting the secondary
shock, v

✓

starts to increase and becomes positive, lead-
ing to a higher density at the disk surface. At the sec-
ondary shock, v

✓

reaches the maximum positive velocity
and leads to the highest density at the disk surface for
the secondary shock. This corrugated motion, first neg-
ative and then positive v

✓

, leads to an enhanced contrast
between the spiral shock and the rarefaction wave after
the shock.
On the other hand, the outer spiral arms do not show

a higher density perturbation at the disk surface, espe-
cially for isothermal disks, as shown in Figure 9. At
R = 2, regardless of height, the di↵erences between the
maximum and minimum density in the logarithmic scale
are both 0.002 for SM1ISO, 0.1 for SM2ISO , and 0.3 for
SM3ISO. This lack of vertical variation is also reflected in
Figure 10 where v

✓

is very small compared with v
r

(v
✓

is
almost two orders of magnitude smaller than v

r

). Thus,
the density structure of the shock is mainly determined

Fig. 9.— Similar to Figure 7, but at R = 2.

by v
r

and v
�

due to the shock compression.

Fig. 10.— Similar to Figure 8, but at R = 2.

For the outer arms in non-isothermal runs (bottom
panels in Figure 9), the density perturbation at the disk
surface is slightly higher than the perturbation at the
disk midplane. Disk material flows from the right hand
side to the left hand side in Figure 9 and 10. When
it meets the shock, it develops a v

✓

towards the disk
surface, which enhances the density at the disk sur-
face. Although it is tempting to contribute such di↵er-
ence between isothermal and non-isothermal runs to the
hydraulic jumps (shock bores) (Boley & Durisen 2006),
such disk structure also appears even in the linear regime
for the 0.01 M

J

case, implying that it may be related to
the eigenfunctions of the 3-D waves excited by the planet.
Finally, to illustrate the increase of the density pertur-

bation with height and the qualitative di↵erence between
inner and outer arms, we plot the relative density per-
turbation along the radius at di↵erent heights (z =0, 1,
2, 3, 4 H) in Figures 11 and 12. The relative density per-
turbation is defined as ⇢

max

(R, z)/⇢
min

(R, z)� 1, where
⇢
max

(R, z) and ⇢
min

(R, z) are the maximum and mini-
mum density along the azimuthal direction (� = [0, 2⇡])
at the fixed R and z. We can see that the inner arms
and outer arms are qualitatively di↵erent. For inner
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Fig. 11.— Relative density perturbations at di↵erent heights for SM1ISO, SM2ISO, SM3ISO. ⇢
max

and ⇢
min

are the maximum and
minimum density along the circle in the azimuthal direction at given R and z. The black (blue, cyan, orange, green) curve is calculated at
the disk midplane (1H, 2H, 3H, 4H). The shaded region represents the region where the density perturbation is determined by the planet
and the circumplanetary region instead of the spiral shock.

Fig. 12.— Similar to Figure 11 but for SM1T1, SM2T1, and SM3T1.

arms, the relative density perturbation is getting larger
at higher altitudes, and the perturbation can increase by

more than a factor of 10 from the midplane to the disk
surface. For the outer arms, the relative density pertur-



12 Zhu et al.

bation is almost unchanged between the midplane and
the disk surface in isothermal disks (Figure 11) and only
increases slightly from the midplane to the disk surface in
non-isothermal disks (Figure 12). Overall, for the inner
arms, the large density perturbation at the disk surface
has a significant e↵ect on the near-IR observations as
shown below.

6. DISCUSSION

6.1. Near-IR Images

To understand how the 3-D structure of density
waves/shocks a↵ects observations, we post-process our
hydrodynamical simulations with Monte-Carlo radiative
transfer calculations to generate near-IR scattered light
images (Figures 13 and 14). The details on the Monte-
Carlo radiative transfer calculations are presented in
Dong et al. (2014, 2015). To assign physical scales to
our simulations, we assume that the planet is at 50
AU and the central source is a typical Herbig Ae/Be
star with a temperature of 104 K and a radius of 2R�.
ISM dust grains have been used and their distribution
is assumed to follow the gas distribution. The total
mass of the ISM dust is assumed to be 2⇥10�5M�. In
MCRT simulations, photons from the central star are
absorbed/reemitted or scattered by the dust in the sur-
rounding disk. Full resolution polarized intensity images
at H band in Figures 13 and 14 are convolved by a Gaus-
sian point spread function with a full width half maxi-
mum (FWHM) of 0.06” to get the convolved images in
Figures 13 and 14. This resolution is comparable with
NIR direct imaging observations using Subaru, VLT, and
Gemini. In the right two panels of Figures 13 and 14, we
assume that the object is 140 pc away, while in the left
two panels we assume that the distance is 70 pc so that
the inner arms are shown more clearly.
To highlight the importance of the 3-D wave structure,

we have also computed models by only using the disk
midplane density from simulations, which is labeled as
2D!3D. In these models, we assume that the disk is in
vertical hydrostatic equilibrium and pu↵ up the midplane
density to higher altitudes.
Overall, in 3D models, the inner arms are considerably

more prominent than the outer arms, and normally a
secondary arm can be as bright as the primary arm. The
shape of the inner arms clearly deviate from the predic-
tion of linear theory. As expected from the non-linear
expansion of spiral shocks, the pitch angle of the inner
spiral arms in the more massive planet case (SM6ISO,
Figure 14) is larger than those in the less massive planet
case (SM1ISO , Figure 13). The inner arms are also quite
sharp, while the outer arms are quite broad and some-
times indistinguishable from the background disk. This
di↵erence is partly because the sharp shock fronts are
facing the star for the inner arms, while they are facing
away from the star for the outer arms. We calculate an
approximate scattering surface, defined as the disk sur-
face where the column density is 0.01 (in code units),
for the SM3ISO model at � � �

p

= 78o, shown in Fig-
ure 15. Clearly, for the inner arms, the shock fronts are
facing the star, while, for the outer arms, the smooth
rarefaction waves are facing the star. Since the rarefac-
tion waves change gradually with radius, they are illumi-
nated by the star more uniformly than the shock. Thus,

the outer arms appear quite broad. However, when the
planet mass is not very high (1 M

J

case), the width of
rarefaction waves in the radial direction can be smaller
than the size of the observational beam, and we won’t
be able to distinguish the inner and outer arms based on
the sharpness of the arms.
By comparing 3D models with 2D!3D models in Fig-

ure 13 and 14, we find that the inner spiral arms are
more prominent in 3D models, as expected due to inner
arms’ higher density perturbation at the disk surface in
3D models (Figure 11). Even in convolved images, the
polarized intensity of inner arms is at least twice stronger
in 3D models than in 2D!3D models.
The secondary inner arms are as strong as the primary

arms in the scattered light images, even though the pri-
mary arms have higher surface density than secondary
arms. This is due to the corrugated motion discussed
above in Figure 7 and 8, which increases the density of
the secondary arms at the disk surface. The secondary
arm is o↵set from the primary arm with some azimuthal
angle, as also shown in the surface density plot (Figure
2). This o↵set is smaller in SM1ISO (Figure 13) than
that in SM6ISO (Figure 14). The two spiral arms are
⇠ 100o apart in SM1ISO (Figure 13), while almost 180o

apart in the more massive planet case (SM6ISO, Figure
14).
The outer shocks are not very apparent, and they are

similar between 3D and 2D!3D models due to the outer
arms having little vertical motions. As discussed in §4,
the outer arms coincidently follow linear theory (Equa-
tion 2). The secondary outer arm is also visible in Figure
14 when the planet mass is large.
Another noticeable di↵erence between 3D and 2D!3D

models is that the planet (or the circumplanetary region)
is bright in 2D!3D models while it is dim in 3D models.
This is because, when we pu↵ the disk from 2-D to 3-D,
we have ignored the planet’s gravity so that the higher
density in the circumplanetary region leads to the higher
density at the disk surface. The circumplanetary region
even casts a shadow to the outer disk in 2D!3D mod-
els. In realistic 3-D models, the gravity of the planet has
been self-consistently included, which pulls the circum-
planetary material towards the disk midplane and leads
to a lower density at the disk surface. Thus, the circum-
planetary region receives less irradiation by the central
star, and becomes dark. On the other hand, the outer
disk beyond the planet is better illuminated and thus
becomes bright instead of being shadowed.
However, we need to keep in mind that we have ignored

the luminosity from the planet and the circumplanetary
disk in our models. Zhu (2015) point out that accreting
circumplanetary disks can be very bright (⇠0.001 L� if
the circumplanetary disk accepts onto Jupiter at a rate
⇠ 10�8M�/yr). Such high luminosity may be able to
illuminate the circumplanetary region significantly. We
may also be able to directly detect such accreting circum-
planetary disks in direct imaging observations operating
at mid-IR wavelengths.

6.2. Thin Disks

A realistic protoplanetary disk becomes less flared at
smaller radii. To explore how the shock structure is af-
fected by the thickness of the disk, we have shown in
Figure 16 the relative density perturbation of the wakes
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Fig. 13.— The near-IR polarized intensity maps for inner (left two panels) and outer (right two panels) arms for SM2ISO (M
p

= M
J

).
The upper panels show the images using disk structure directly from 3-D simulations while the bottom panels use disk structure assuming
the disk is in vertical hydrostatic equilibrium. The dotted curves are the positions of the spiral wake derived from linear theory (Equation
2).
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Fig. 14.— Similar to Figure 13 but for SM3ISO (M
p

= 6M
J

).

in the thin disk simulation (STHIN). Compared with Fig- ure 11, we can see that the density perturbation increases
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Fig. 15.— The scattering surface where the column density is
0.01 (code units) for SM3ISO. Shock fronts are facing the star for
the inner spiral shocks while the rarefaction waves are facing the
star for the outer spiral shocks.

Fig. 16.— Similar to Figure 11 but for run STHIN.

by a factor of 2 from the midplane to 3 H, and a factor
of 4 from the midplane to 4 H in the thin disk, com-
pared with a factor of 4 and 10 respectively in the thick
disk. This suggests that the wakes/shocks have more
significant 3-D structure in a thicker disk. Although this
does not favor detecting spiral arms in thinner disks (e.g.
at 10 AU) in future, we need to keep in mind that the
same mass planet will excite stronger density waves in a
thinner disk due to its smaller thermal mass, so that the
inner arms may still be observable in a thin disk.

7. CONCLUSION

We have carried out two dimensional (2-D) and three
dimensional (3-D) hydrodynamical simulations to study
spiral wakes/shocks excited by young planets. Simula-
tions with di↵erent planet masses (0.01, 1, and 6 M

J

)
and di↵erent equations of state (isothermal and adia-
batic) have been carried out.

• We find that the linear density wave theory can
only explain the shape of the spiral wakes excited
by a very low mass planet (e.g. 0.01 M

J

). Spi-

ral shocks excited by high mass planets clearly de-
viate from the prediction of linear theory. For a
more massive planet, the deviation is more signifi-
cant and the pitch angle of the spiral arms becomes
larger. This phenomenon can be nicely explained
by the wake broadening from the non-linear density
wave theory (Goodman & Rafikov 2001, Rafikov
2002). A more massive planet excites a stronger
shock which expands more quickly, leading to a
larger pitch angle.

• A secondary inner spiral arm is also excited by the
planet. It seems to be excited at the edge of the
N-shaped primary arm. The more massive is the
planet, the larger is the separation between the pri-
mary and secondary arm. At the disk surface, the
secondary inner arm can be as strong as the pri-
mary arm. The secondary inner arm almost keeps
the same azimuthal separation with the primary
arm at every radius in the disk.

• The spiral shocks have significant 3-D structure.
They are not perpendicular to the disk midplane.
They are curled towards the star at the disk sur-
face. This further increases the pitch angle of the
inner arms at the disk surface, but reduces the
pitch angle of the outer arms at the disk surface.
For outer arms, this e↵ect compensates the in-
creased pitch angle due to wake broadening. Even-
tually at the disk surface, the shape of outer spiral
arms still roughly follows the prediction of linear
theory, while the inner arms are considerably more
opened than predicted by the linear theory.

• The inner spiral shocks also have significant verti-
cal motion. The corrugated motion increases the
density perturbation of the inner spiral arms by
more than a factor of 10 at z ⇠ 3 � 4H compared
with the perturbation at the disk midplane. This
can dramatically increase the contrast of the spiral
structure in near-IR scattered light images. The
outer spiral shocks have little vertical motion in
isothermal disks. With a non-isothermal EoS, there
are some vertical motions for the outer arms, which
can make the outer arms more apparent.

• We have combined our hydrodynamical simulations
with Monte-Carlo radiative transfer calculations
to generate near-IR scattered light images. We
find that the inner spiral arms in synthetic near-
IR images using full 3-D hydrodynamical models
are much more prominent than those based on 2-
D models assuming hydrostatic equilibrium, as ex-
pected since for the inner arms the density pertur-
bation at the disk surface in 3D models is much
larger than that in 2D models. Inner spiral arms
are prominent features that are observable by cur-
rent near-IR imaging facilities. On the other hand,
the outer shocks are not very apparent and they
are similar in synthetic images using 3D and 2D
models, since the outer arms have little vertical
motions. This indicates the need to model obser-
vations (especially for inner arms) with full 3-D
hydrodynamics.
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• The di↵erent geometry between the inner and outer
arms also a↵ects their appearance in near-IR im-
ages. The sharp shock fronts of the inner arms
face the central star directly, producing sharp nar-
row spiral features in observations. On the other
hand, for the outer arms, the smooth rarefaction
waves face the central star, producing broad and
dimmer spiral features.

• In near-IR images, the circumplanetary region is
very dim since the planetary gravity reduces the
density at the disk atmosphere. However, the disk
region behind the planet can be better illuminated
and becomes bright.

• In the Appendix, we have shown that buoyancy
resonances are confirmed in global adiabatic simu-
lations even if the disk has a moderate cooling rate.
They can lead to sharp density ridges around the
planet, which may have observational signatures.

Overall, spiral arms (especially inner arms) excited by
low mass companions are prominent features in near-IR
scattered light images. Most importantly, we can use
the shape of spiral patterns and the separation between
the primary and secondary arms to infer not only the
companion’s position but its mass.
In a companion paper (Dong et al. 2015), we have com-

bined MCRT and hydrodynamical simulations from this
paper, and shown that planet-induced inner arms can ex-
plain recent near-IR direct imaging observations for SAO
206462 and MWC 758.

All hydrodynamical simulations are carried out using
computer supported by the Princeton Institute of Com-
putational Science and Engineering, and the Texas Ad-
vanced Computing Center (TACC) at The University of
Texas at Austin through XSEDE grant TG- AST130002.
This project is supported by NASA through Hubble Fel-
lowship grants HST-HF-51333.01-A (Z.Z.) and HST-HF-
51320.01-A (R.D.) awarded by the Space Telescope Sci-
ence Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., for NASA,
under contract NAS 5-26555.

APPENDIX

BUOYANCY RESONANCES

Fig. 17.— Temperature fluctuations (the left panel) and v
✓

(the middle panel) at z = 2H for SM1T1. The right panel is the same as the
left panel but in Cartesian coordinates. The dotted lines/curves are the position of buoyancy resonances from Equation (A3).
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Fig. 18.— The temperature structure for SM2T1 at an azimuthal slice (� � �
p

= 100o). Spiral shocks and buoyancy resonances are
labeled. The dotted lines are again from Equation (A3).

The inner and outer spiral shocks are due to the steepening of spiral density waves which are excited by the planet
at Lindblad resonances. At Lindblad resonances, the Doppler shifted frequency matches the disk epicyclic frequency
(m(⌦

p

� ⌦) = ±) and density waves are excited.
However, besides the epicyclic frequency, the disk also has other natural frequencies. When the disk is not strictly

isothermal, it has a non-zero Brunt-Väisälä frequency

N(z) =

r
� � 1

�

g(z)

c
s,iso

(A1)

where c2
s,iso

= p/⇢. Matching the Brunt-Väisälä frequency with the Doppler shifted frequency, we have

r
� � 1

�

⌦
K

(R)z

H

✓
1 +

z2

R2

◆�3/2

= ±m(⌦
p

� ⌦) . (A2)

Given a m, Equation (A2) gives the position of the resonances. These buoyancy resonances were discovered in
shearing box simulations (Zhu, Stone, & Rafikov 2012) and studied analytical in Lubow & Zhu (2014). They have
significant contributions to the planetary torque, especially around the planet, which may a↵ect planet migration.
These resonances are infinitely thin, and no waves are excited to carry the deposited angular momentum and energy
away. Their dissipation relies on microscopic viscosity or radiative cooling. Thin density ridges with large temperature
and velocity variations appear at these resonances.
When various m modes overlap with each other, we can roughly estimate the position of the final density ridges

caused by buoyancy resonances following Equation 10 and 11 in Zhu et al. (2012). First, given a m, we can calculate
the corresponding resonance position at R and z. Then using the azimuthal wavelength for this mode � = 2⇡/m, the
geometric location of the constant phase 2n⇡ (n is integer) is given by � = n� (assuming the phase of buoyancy waves
is 0 at the planet position.). Thus,

� = ±2n⇡(⌦
p

� ⌦)

r
�

� � 1

H

⌦
K

(R)z

✓
1 +

z2

R2

◆3/2

. (A3)

We plot temperature fluctuations and v
✓

at z = 2H for SM1T1 in Figure 17. The positions of buoyancy resonances
given by Equation (A3) are plotted with dotted lines/curves. Figure 17 shows that both temperature fluctuations and
v
✓

are nicely tracked by Equation (A3), suggesting that buoyancy resonances exist in disks even with T
cool

= 1.
Even though buoyancy resonances can a↵ect planet migration, they may not be observed through direct imaging

technique since the density fluctuations caused by these resonances are much weaker than the spiral density waves
excited by Lindblad resonances. For example, in the z = 3H panels of Figure 3, we can see some density fluctuations
close to the corotation region (especially for SM2T1, the 1 M

J

case), but they are much weaker than the spiral shocks.
These buoyancy resonances also have vertical structure, as shown in Figure 18. We sliced through the disk at a fixed

�, and the buoyancy resonance curves are plotted as dotted curves in Figure 18. At the disk midplane, N = 0 and
there are no buoyancy resonances. Since N increases with disk height, |⌦

p

� ⌦| also needs to increase with height to
match the Brunt-Väisälä frequency considering � and m are the same at the same �. Thus, the curves move away
from the planet position towards the disk atmosphere.
Figure 18 also shows the inner and outer spiral shocks which are hotter at the shock position.
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