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η Carinae (η Car) is the most massive star known in the Milky Way1, and a prototype
of the poorly understood Luminous Blue Variable stars. It is in a binary system with a
period of 5.52 years2. Since it is one of the few systems close enough (2.3 kpc) to resolve
circumstellar material and has evolved on a human timescale, much of our knowledge about
the mass loss of massive stars is derived from this system3. It became the second-brightest
star in the sky during its mid-19th century “Great Eruption,” but then faded from view; only
visual estimates of its brightness were recorded and nothing is known about the eruption’s
spectrum4. Here we report the discovery of light echoes of η Car which appear to be from
the 1838-1858 eruption. While some of the light from the eruption traveled directly to Earth
and was observed in the mid-19th century, light directed away from the Earth scattered off
a dust sheet and has now been observed after a half-century delay. Spectra of these light
echoes provide a direct estimate of the effective temperature and other physical properties
of this eruption including the expansion speed, raising questions about traditional scenarios
for the eruption that involve a minimum temperature for steady opaque winds. We also find
important differences between the light-echo spectra of η Car and spectra of extragalactic
transients previously presumed to be analogues.
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Because of its proximity, η Car is probably the most intensely scrutinized massive star sys-
tem. It lies at the heart of the Carina star-forming region, is surrounded by an intricate circumstellar
nebula ejected during the Great Eruption, has spectacular variability at all wavelengths1, and is in
a binary system with a period of 5.52 years 2. The Great Eruption is thought to have ejected more
than 10 M⊙ from the star, and to have released about 10% of the energy of a core-collapse super-
nova (SN)5, 6, even though the star survived the event. The underlying physical mechanism of the
outburst remains unexplained.

Some extragalactic non-SN transients have been interpreted as analogues of the Great Erup-
tion of η Car 7–12. However, their widening diversity calls into question their association or suggests
that massive eruptions like η Car are only a subset of non-terminal eruptions13. An important gap
in our understanding is that until now we have had only visual brightness estimates for the Great
Eruption of η Car4, whereas we have modern spectra and precise photometry for the extragalactic
transients.

1 Light Echoes of η Carinae’s Great Outburst

In 2003, 2010, and 2011, we obtained images with the CTIO 4-m Blanco telescope of a region
∼0.5 degrees to the south of η Car (Figure 1) that, when differenced, show a rich set of light
echoes. We have also found similar echo candidates at other positions, which we are currently
monitoring. Applying the vector method that previously allowed us to identify the source of the
light echoes from the SNe that produced the SNRs 0509−67.5, Cas A, and Tycho14, 15, we find
that a dramatic brightening of η Car must be the origin. In these echoes, unlike those of Galactic
SNe16, there is still significant spatial overlap even at separations of one light-year, suggesting that
the duration of the event causing them must be significantly longer than one year. We also see
brightening of 2 magnitudes or more within 8 years. Thus, the Lesser Eruption from 1887 to 1896,
which brightened by only a magnitude, is excluded as the source. The large brightening and long
duration point to the Great Eruption as the source of the light echoes.

We have also obtained a composite light curve in the SDSS i filter of the light echoes from
other telescopes (see Fig. 2), showing a slow decline of several tenths of a magnitude over half a
year. Within the Great Eruption there are three known peaks4 at 1838, 1843, and 1845. The echo
light curve is most consistent with the historical observations of the 1843 event, although further
observations are necessary to be certain (see the Supplementary Information, SI).

2 Spectroscopy

Three spectra of the light echo are shown in Figure 3 — the positions differ only slightly in slit
angle (see Table S1). The light-echo spectra do not show emission lines, only absorption lines
characteristic of cool stellar photospheres. In particular, the Ca II infrared (IR) triplet is in absorp-
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tion and not in emission. The right panel of Figure 3 shows the region of Hα and [N II]. Because
of bright ambient nebular emission, it is difficult to determine if there is any emission from η Car
itself, but in any case it must be weak if present. By cross-correlating each of our η Car echo spec-
tra with the UVES spectral library17 (see Figure S6 and S7) we find best agreement with supergiant
spectral types in the range of G2-G5, with an effective temperature of ∼5000 K. Spectral types of
F7 or earlier are ruled out by our analysis (see SI for more details).

The Ca II IR triplet absorption features in the spectrum are noticeably blueshifted (see Fig-
ure S6). By cross-correlation with G-type18 templates, we determine velocities of −202 ± 9,
−210 ± 14, and −237 ± 17 km s−1 for our three spectra. Averaging these, and adding an un-
certainty for the the motion of the scattering dust sheet, we estimate the average velocity to be
−210± 30 km s−1.

The bipolar nature of Homunculus Nebula shows that the η Car Great Eruption was strongly
aspherical. It was previously predicted that the outflow speeds one would derive from spectra of
η Car in outburst, looking at the poles and equator of the double lobes, would be ∼ −650 km s−1

and −40-100 km s−1, respectively3 (outflow speeds near the equator have a steep latitude depen-
dence). The light echo we investigate in this paper arises from latitudes near the equator of η Car
(see Figure S5), and the measured blue-shifted velocity of−210±30 km s−1 is in good agreement
with expansion speeds within±20◦ of the equatorial plane. We also find a strong asymmetry in the
Ca II IR triplet, extending to a velocity of−850 km s−1. This is well below the speeds of the fastest
polar ejecta found previously6, but is in good agreement with speeds observed in the blast wave
at lower latitudes6. Future observations of light echoes viewing the η Car eruption from different
directions, in particular from the poles, may have the potential to observe these very high-velocity
ejecta and other asymmetries.

3 Comparison to LBVs and SN impostors

Luminous Blue Variable (LBV) outbursts are divided into two classes8, 11, 19: “S Doradus (S Dor)-
like” excursions in the HR diagram from OB to AF spectral types, with changes in the visual bright-
ness of 1-3 magnitudes but nearly constant bolometric luminosity, and η Car-like giant eruptions
with the brightness increasing visually by more than 3 magnitudes, an increase in the bolometric
luminosity, and an increase in the mass-loss rate8, 9. A characteristic of both types of LBV outbursts
is their transition from a hot quiescent state to a cooler outburst state, although this feature is less
well observed for the giant eruptions (see Figure 4).

While neither type of LBV outburst is well understood, the traditional mechanism for η Car-
like giant eruptions is an unexplained increase in luminosity that drives a denser wind, so that an
optically thick pseudo-photosphere forms at a layer much larger and cooler than the hydrostatic
stellar surface. As the mass-loss rate increases, the effective temperature decreases and the effec-
tive photosphere of the star moves outward into the wind20. This scenario predicts a minimum
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effective temperature of ∼7000 K (an F-type spectrum) due to the temperature dependence of the
wind opacity. In contrast, S Dor-type outbursts are suggested to involve an actual expansion of
the stellar photospheric radius; these events also have minimum temperatures in the 7000-9000 K
range and exhibit spectra at maximum resembling A or F-type supergiants8, 19. These events evi-
dently occur as a massive star attempts to evolve redward and encounters the Humphreys-Davidson
Limit, beyond which no stable stars are observed.

Surprisingly, our G-type light-echo spectrum of the η Car Great Eruption is inconsistent
with expectations of an opaque-wind model20 (see Figure 4). This model also fails to explain the
high 1050 erg kinetic energy5 and the presence of a fast blast wave at large radii6. Instead, these
observations point toward a hydrodynamic explosion mechanism2, 5, 6. Other alternative models
involving accretion in a binary system have also been proposed12.

The first visual spectroscopic observations of η Car around 1870 showed emission lines 21, 22.
A photographic spectrogram obtained during its Lesser Eruption circa 189023, 24 resembles an F-
type supergiant blueshifted by−200 km s−1, with moderate hydrogen P Cygni profiles, which is as
expected in the opaque-wind model20. The difference between the 1890 and our light-echo spectra
of the Great Eruption is therefore quite striking, indicating that two distinct physical processes may
have been involved. However, the 1890 event also produced a mass ejection, the Little Homuncu-
lus, with the same axial symmetry as the Great Eruption25, albeit of a much smaller amount.

Although η Car’s Great Eruption has been considered the prototype of the so-called SN
impostors or η Car analogues, it is actually an extreme case in terms of radiated energy (1049.3 erg),
kinetic energy (>1050 erg), and its decade-long duration13. Typically, the hotter SN impostors have
steep blue continua, stronger and broader Balmer lines, and relatively weak absorption, whereas
the cooler ones tend to have redder continua, weaker and narrower Balmer lines, strong [Ca II]
and Ca II emission, deeper P Cygni absorption features, and in some cases stronger absorption
spectra similar to F-type supergiants13. However, the η Car Great-Eruption light-echo spectrum
is quite different. Its spectral type is G2-G5, significantly later than all other SN impostors at
peak. Furthermore, the Ca II IR triplet lines are only in absorption. It is difficult to see how
strong emission lines could be avoided in an opaque wind where the continuum photosphere is
determined by a change in opacity, so this is another argument against that model. For the extreme
mass-loss rates required in η Car’s Great Eruption, another process must give rise to the apparent
temperature.

The Great Eruption of η Car is one of the most spectacular known astronomical events, pro-
viding valuable clues for understanding massive stars, stellar mass loss, LBVs, and SN impostors.
Yet for a century and a half we were missing critical spectral information about the eruption it-
self, due to the technological limitations of the past. The discovery of its light echoes gives us a
second chance to relive this important event. The early data presented here have already revealed
surprises. Many more will come as we continue to watch echoes from the Great Eruption in real
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time, as we follow new echoes from different time periods, and as we add spatial information to
build a four-dimensional picture of the death throes of one of the most interesting objects in the
Milky Way.26, 27

Acknowledgements We thank R. Humphreys, K. Davidson, and J. Vink for comments and discussions.
We thank S. Blondin for help with the continuum subtraction. The Blanco 4m telescope is a facility of
the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which are operated
by the Association of Universities for Research in Astronomy, under contract with the National Science
Foundation. We use data from the UVES Paranal Observatory Project. The computations in this paper were
run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard
University. Observations were obtained at LCOGT, and FBB and DAH acknowledge support from LCOGT.

Author Contributions All authors contributed to the drafting of the paper. A.R., N.S and R.C.S. imaged
the area around η Car. A.R. and M.H. reduced the imaging data. H.E.B. provided images of the echoes that
guided our spectroscopic pointings. J.L.P., R.C., R.J.F., and W.F. obtained the spectra and reduced them.
A.R. and J.P.L. performed spectral analysis and interpretation. A.R., N.R.W., and F.B.B performed spectral
classification. F.B.B. and K.M. correlated the spectra. A.R., D.L.W. and B.S. modelled the light echo. I.T.
and D.M. provided imaging of η Car. F.B.B and D.A.H provided the FTS images, F.B.B and A.R. reduced
them.

Author Information The authors declare that they have no competing financial interests. Correspondence
and requests for materials should be addressed to A.R. (arest@stsci.edu).

5



S4 Supplemental Information

Three dimensional orientation The scattered-light path is shown in Figure S5. The 3D-plot
shows that with this light echo we see the eruption of η Car from a viewing angle perpendicular to
the principal axis of the Homunculus Nebula. It will be very interesting to compare spectra seen
from this viewing angle with spectra from light echoes that view the eruption from the poles of the
bipolar outflow.

Evidence that these are light echoes of the mid-19th century Great Eruption of η Car The
angular separation between the center of our light-echo images and η Car is∼0.5 degrees, as shown
in the left panel of Figure 1, in which our pointing is indicated with a white box. In the middle
panel of this figure, our three epochs of SDSS i-band imaging obtained with the 8k × 8k Mosaic
imager on the CTIO 4-m Blanco telescope are displayed. The images, each with an exposure
of 160 s, were obtained on 2003 Mar 10 (A), 2010 May 10 (B), and 2011 Feb 6 (C). Difference
images, C −A and C −B, are also shown (upper and middle right panels, respectively). In them,
we notice excess flux from the first (black) and second epochs (white), which we interpret as light
echoes from η Car. Sample light-echo positions are indicated with blue (epoch A) and red (epoch
B and C) arrows.

Comparing the first- and second-epoch images, we can determine the direction of the appar-
ent motion of the light echo and infer the direction to the illuminating source. Most of the excess
flux in the first-epoch image is toward the northern part of the image (blue arrows in Figure 1,
whereas most of the excess flux in the second-epoch image is in the southern portion (red arrows
in Figure 1. If the light echoes arise from η Car, this is exactly the directional sense expected. We
have also found similar regions of excess flux at other positions in proximity to η Car, with ap-
parent motions consistent with η Car being the source of the outburst light, which we will discuss
in a follow-up paper. The vector method we have used previously to determine the origin of the
light echoes for SNR 0509−67.5, Cas A, and Tycho14, 15 was applied here and, not surprisingly,
we conclude that these excess fluxes are most likely light echoes from a dramatic brightening of
η Car.

The flux profile of a light echo, which is the cut through the light echo along the axis pointing
toward the source event, is the projected light curve, stretched or compressed depending on the
inclination of the scattering dust filament, and convolved with the effects of the dust width and
the seeing16. In pathological cases where the inclination of the dust filament is very unfavorable
or where the dust filament is significantly thicker than any yet observed, a useful correspondence
may be lost16. For light echoes from sources in our Galaxy scattered by dust with typical widths
and inclinations, we expect that the apparent motion of the light echo will move at a rate of one
projected echo width between two epochs separated by twice the outburst event duration. For
known galactic SNe light echoes the timescale of the brightest phase is of the order of a few
months, so that an imaging separation time of 1 year is sufficient for there to be no overlap (on
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the sky) of light-echo features14, 15. For a several-decade duration outburst, like that of η Car, the
difference image C−B has only a time difference of 1 year, and can only reveal the small boundary
fractions of the light echo in C, whose more complete extent can be seen in C−A which has a time
difference of 8 years. We conclude that the duration of the event illuminating these light echoes
is significantly longer than one year, consistent with our conclusion that these are echoes of the
20-year long Great Eruption of η Car.

Determination of spectral type We compare the light-echo spectra to the compilation of super-
giant spectra in the UVES atlas17 (see Table S2). The upper left panel of Figure S6 shows the
light-echo spectra, flattened by dividing by low-order continuum fits, and the UVES supergiant
sequence. The instrument configuration for the EC1A spectrum was designed to optimize the S/N
ratio in the wavelength region of the Ca II IR triplet, resulting in a lower S/N ratio for λ < 6000 Å.
For this reason the EC1A spectrum is absent from the upper left panel of Figure S6. The light-echo
spectra correlate very well with late-F and G-type stars, in particular the Mg b lines and line blends
at 5270 Å and 6497 Å. Both earlier- and later-type spectra show significantly fewer similarities.

We calculate the cross-correlation parameter r between the light echo and the UVES spectra
using the IRAF routine xcsao in the wavelength range 5050-6500 Å (see left panel of Figure S7).
We exclude wavelength ranges contaminated by fore/background emission lines (see Table S4).
We find that extending the wavelength region to redder wavelengths (e.g., 5050-7500 Å) decreases
the correlation, and in particular the correlation differences between the different spectral types.
The reasons for a decrease in correlation are threefold: (1) the spectral differences between F, G,
and K stars are stronger in the bluer wavelength ranges, and therefore including redder wavelengths
dilutes the discrimination power, (2) strong fore/background emission lines like Hα, N II, and
S II introduce large discontinuities in the wavelength coverage, and (3) the chip gaps fall into the
6500-7500 Å wavelength range, further adding to the discontinuities. For the above reasons we
determine the 5050-6500 Å wavelength range to be optimal for the correlation analysis.

To quantitatively estimate the temperatures of the supergiants that correlate best, we smooth
r(Teff ) with a Gaussian of width σ = 300 K (see lines in left panel of Figure S7). We find that the
temperature with maximum correlation is 5210 K and 4950K for EC1B and EC1C, respectively.
The right panel of Figure S7 shows the probability density functions (PDFs) of the temperature,
Teff , of the supergiant spectral template having the best smoothed correlation, r(Teff ), with each
light-echo spectrum. The PDFs are computed by bootstrap resampling of the distribution 105

times. The 95% confidence intervals of the best-matching temperatures are 4850-5550 K (spectral
type G0-G5) and 4450-5400 K (spectral type G0-K1) for EC1B and EC1C, respectively. Using
an extended wavelength range of 5050-7500 Å, the 95% confidence intervals are 3700-6300 K
(F8-K5) and 3450-5100 K (G2-M1) for EC1B and EC1C, respectively. For the reasons mentioned
above, the extended wavelength range results in a spectral type that is less constrained compared to
the 5050-6500 Å range. We conclude that the light-echo spectra agree best with supergiant spectral
types in the range of G2-G5, with an effective temperature of∼5000 K. We conservatively exclude
spectral types of F7 and earlier.
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Unfortunately, the UVES spectra have a gap in coverage around the Ca II IR triplet, and
therefore we use a compilation of supergiant spectra18 covering the Ca II triplet wavelength range
(see Table S3). The lower-left panel of Figure S6 compares the observed light-echo spectrum
with this atlas. For early-type stars up to G0, the wavelength range redward of 8300 Å is mainly
dominated by the H Paschen series, which contaminates the Ca II triplet but gradually disappears
as the effective temperature decreases18. Note that the observed light-echo spectra do not show any
clear signs of the H Paschen lines; in particular, the lines at 8409 Å and 8498 Å are at most very
weak. The earliest spectral types in agreement with such weak or non-existent H-Paschen lines are
late F-types, in excellent agreement with the spectral correlation results in the wavelength range
5050-6500 Å.

Visual observers noted a reddish or “ruddy” color during η Car’s Great Eruption, e.g. de-
scribed by Herschel as “redder than Arcturus”4, 28. These observations point to a temperature of
Teff < 4500 K, lower than the temperature we infer from the spectral lines. It is plausible that
reddening by grains forming in the eruption cause the apparent color. We note, however, that the
temperature inferred from the spectral type is much more reliable than an apparent color, in par-
ticular one done visually, since it is not influenced by reddening due to unknown amounts of new
dust formation along the line of sight.

The lower-right panel of Figure S6 shows velocities determined from cross-correlation from
spectra of different spectral types. The contribution to the derived velocity due to motion of the
reflecting dust sheet, i.e. the moving-mirror effect, is likely less than 30 km s−1 given the relatively
low dominant expansion speeds of cool gas in the Carina Nebula H II region29. This systematic
error could be constrained better with more spectra of light echoes located close enough to each
other that they probe similar viewing angles, but different enough that the scattering dust is parsecs
apart and thus has independent velocities.

The most similar SN impostor The closest SN impostor in temperature is UGC 2773 OT2009-1,
which is also dominated by a forest of absorption lines, similar to an F-type supergiant26, 27. How-
ever, the Ca II IR triplet has a P Cygni profile with a strong emission component27. Interestingly,
UGC 2773 OT2009-1 is also one of the few examples where the outburst has persisted for years
and in fact still continues13, 26, 27.

Hα line The interpretation of the Hα emission line is difficult, since the fore/background emission
line subtraction is imperfect. The left panel of Figure 3 shows the Hα line of the three observed
light-echo spectra. Both EC1B and EC1C show narrow emission at zero velocity, most likely due
to the incompletely subtracted fore/background emission. However, they also show asymmetry at
the wavelength for which we would expect Hα emission if the hydrogen has the same blueshifted
velocity of -210 km s−1, indicated with the red line. If this is indeed a blueshifted Hα from the
eruption, it is a narrow one unlike many of the SN impostors, but similar to the coolest ones like
UGC 2773 OT2009-126, 27 .
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Epoch of Spectra The slit position of the light echo spectrum is shown in the bottom right panel
of Figure 1. Because the η Car Great Eruption lasted over a decade, it is not straightforward to
determine the epochs probed by the light-echo spectra. In order to attempt this, we compare the
historical light curve4 (see Figure 2) with time variation of the light echoes.

We summarize here an account4 of the photometric history of the Great Eruption of η Car.
John Herschel recorded a brightening of ∼1 mag in less than two weeks near the end of 1837.
Over the next few months, η Car slowly faded again. Unfortunately, there is a gap in brightness
estimates for the period between late 1838 and 1841. There was another brightening in early 1843,
and then another episode where η Car again faded back to typical non-outburst brightness. Late in
1844, η Car’s greatest recorded brightening episode began, with peak brightness occurring in early
1845. Thereafter a slow decline began which lasted for the next decade.

We can compare η Car’s historical light curve to the light curve we derived from the light
echoes: at a given epoch and position on the sky, the light-echo flux is the flux of the source event
integrated over a range of epochs. The range of epochs represented in the instantaneous flux at a
given pointing depends on both astrophysical (dust width and inclination) and observational (see-
ing) factors, and can be represented by a near-Gaussian window function16. For the light-echo
systems we have characterized around the Cas A and Tycho remnants, the full width at half maxi-
mum was on the order of 25-120 days16. Thus if the flux at the same spatial position is measured
at different epochs, the brightness recorded will be the true outburst light curve convolved with the
window function.

With four more epochs of the light echo obtained at the Faulkes Telescope South (FTS) 2-m
telescope, we generated light curves of η Car at 17 positions along the spectroscopic slit shown
in Figure 1. Since we have images from 2003 to mid-2011, these light curves span ∼8 years.
After an overall normalization to each of these light curves to match each other, the differences
in light-curve profiles are remarkably small, with a typical standard deviation in flux of 2-4% (see
Table S5). We therefore average these light curves into a single light curve. We show this light
curve in Figure 2, shifted by 174.2 yrs (green circles), 167.95 yrs (red circles), and 166.28 yrs
(blue circles) in order to match the 1838, 1843, and 1845 outbursts, respectively. The earliest
epoch (2003) needs to be considered an upper limit, since that epoch was used as the template
for the difference imaging, and we determined the light-echo flux at that epoch as the difference
between the flux in the template image and the flux at a different, apparently empty position in the
same image. In other words, there is an undetermined flux zeropoint when an on-frame reference
location may contain light echo flux. It is also important to note that the light echo light curve is
determined from images in SDSS i, which can introduces systematics when comparing it to the
visual magnitude of the historical light curve, in particular since LBV’s change their colors during
outbursts.

The light-echo light curve we derive from our images clearly reveals brightening of 2 mag-
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nitudes or more within an interval of 8 years. The Lesser Eruption of η Car from 1887 to 1896
caused η Car to brighten by roughly 1 magnitude only. Unless the Lesser Eruption was extremely
asymmetric such that it increased by an additional 1 magnitude or more in the direction of the light
echo, the Lesser Eruption is excluded as the source of the light echoes. We also note that most of
the brightening occurs between the second and third epochs in a 9 month time-span, indicating that
the peak was at some time between these epochs.

We conclude that there are three remaining eruption scenarios to which our observed light
curve could be assigned: 1) the 1838 peak, 2) the 1843 peak, and 3) the 1845 peak. A fourth possi-
bility is an even earlier, unrecorded brightening. Our ability to decide among the different scenarios
relies on the time differences between our images and spectra. The second- and third-epoch pair
have only 9 months between them and therefore provide strong discrimination for brightenings.
The spectroscopic observations were done shortly after the third-epoch images, corresponding to
<9 months after a brightness maximum.

We now discuss the individual scenarios and the likelihood that they correspond to the bright-
ening observed in our images:

• 1838 peak: The first two epochs agree very well with the historical light curve. The histori-
cal light curve seems to decline faster after the peak at the beginning of 1838. Unfortunately,
the historical data that constrain this decline are few and have large uncertainties. In addition,
if the width of the scattering dust filament is very large, then the window function can span
a wide range of epochs, which would cause the light-echo light curve to have a shallower
decline then the event light curve.

• 1843 peak: The first two epochs again agree very well. The decline in brightness is in very
good agreement with what would be expected from the historical light curve.

• 1845 peak: The first two epochs also agree very well with the 1845 peak. However, the cur-
rent decline in brightness (≈0.6 mag yr−1) is considerably faster than the typical decline of
≈0.1mag yr−1 observed after 1845. The light-echo light curve can only be put in agreement
with the historical light curve if there was a fast, unobserved decline from the peak in 1845.

We conclude that the most likely source of the light echoes for which we have spectra is
the 1843 outburst, shortly after its peak. Assuming typical dust properties as observed for light
echoes of other Galactic sources 16, the spectra is the light-curve-weighted average over an epoch
range of 1-4 months. In the future, we will be able to further constrain the epoch range with
additional imaging data. The two peaks in 1838 and 1845 cannot yet be excluded completely, but
continued observations of the light echoes at monthly intervals should discriminate the possibilities
within a year. This work, combined with targeted new observations and other contemporary images
which may become known, will likely provide a detailed photometric time-series of the Great
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Eruption with the probability of a useful companion spectral time-series. The recovery of valuable
astrophysical observational data from the pre-imaging era is another powerful illustration of the
power of light-echo observations
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Star Name HD Spectral Type Teff

N Car HD 47306 A0 II 9500
HR 4541 HD 102878 A2 Iab 9100
. . . HD 34295 A4 II 8800
n Vel HD 74272 A5 II 8500
y Car HD 97534 A6 Ia 8400
HR 3739 HD 81471 A7 Iab 8300
ι Car HD 80404 A8 Ib 8200
. . . HD 104111 A8 II 8200
V399 Car HD 90772 A9 Ia 8000
HR 3496 HD 75276 F2 Iab 7480
b Vel HD 74180 F3 Ia 7320
HR 5024 HD 115778 F4 II 7160
ρ Pup HD 67523 F6 II 6600
BG Cru HD 108968 F7 Ib/II 6400
HR 8470 HD 210848 F7 II 6400
δ CMa HD 54605 F8 Iab 6200
V810 Cen HD 101947 F9 Iab 5900
γ

1 Nor HD 146143 F9 Ia 5900
BB Sgr HD 174383 G0 Ib 5500
ER Car HD 97082 G1 Iab/Ib 5300
. . . HD 136537 G2 II 5100
β Crv HD 109379 G5 II 4830
. . . HD 125809 G5/G6 Ib 4790
HR 3673 HD 79698 G6 II 4750
τ Leo HD 99648 G8 Iab 4590
d Cen HD 117440 G9 Ib 4500
HR 3583 HD 77020 G9 II 4500
HR 554 HD 11643 K1 II 4400
� Peg HD 206778 K2 Ib 4300
3 Cet HD 225212 K3 Iab 4000
HR 611 HD 12642 K5 Iab 3750
HR 2508 HD 49331 M1 Iab 3450
V528 Car HD 95950 M2 Ib 3350
CR Cir HD 131217 M2/M3 II 3300

Table S2: Supplementary Information: UVES Supergiant Stellar Spectra Library17. We
convert the spectral type into the effective temperature Teff using the spectral-type to
temperature relation for supergiants 30
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Star Name HD Spectral Type T0 Teff

5 Per HD 13267 B5 Ia 13800 13700
ν Cep HD 207260 A2 Ia 9100 9100
φ Cas HD 7927 F0 Ia 7425 7800
ν Aql HD 182835 F2 Ib 7350 7480
44 Cyg HD 195593 F5 Iab 6600 7000
35 Cyg HD 193370 F6 Ib 6200 6600
V440 Per HD 14662 F7 Ib 5900 6400
HR 7008 HD 172365 F8 Ib-II 5500 6200
. . . HD 18391 G0 Ia 5500 5500
HR 7456 HD 185018 G0 Ib 5550 5500
14 Per HD 16901 G0 Ib-II 5478 5500
HR 3459 HD 74395 G2 Iab 5250 5100
β Dra HD 159181 G2 Iab 5250 5100
. . . HD 187299 G5 Ia 5010 4830
β Lep HD 36079 G5 II 5170 4830
ξ Pup HD 63700 G6 Ia 4990 4750
ξ

1 Cet HD 13611 G8 Iab 5040 4590
. . . HD 12014 K0 Ib 5173 4450
ζ Cep HD 210745 K1.5 Ib 4500 4350
γ

1 And HD 12533 K3 IIb 4383 4000
41 Gem HD 52005 K4 Iab 4116 3900
V809 Cas HD 219978 K4.5 Ib 4250 3825
α Ori HD 39801 M2 Iab 3614 3350

Table S3: Supplementary Information: Ca II IR triplet Supergiant Stellar Spectra Library18.
The temperature T0 is the effective temperature quoted by Cenarro et al.18. For consis-
tency we also calculate Teff using the same stellar type-temperature relation30 we used
for the UVES spectral library.
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Line λmin λmax

O I 5577.4 5572 5582
Na I D 5890.0, 5895.9 5860 5921
O I 6300.2 6295 6305
O I 6363.9 6359 6369

Table S4: List of the fore/background emission lines which are excluded from the 5050-
6500 Åwavelength range of the correlation analysis. For each spectroscopic line, λmin

and λmax define the initial and final wavelengths in Å of the contaminating line region we
exclude.
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Figure 1
η Car light echoes. The left panel shows the positions of η Car and our images (white
box), plotted on an image in the light of 3 different emission lines: oxygen (blue), hydrogen
(green), and sulfur (red) (credit: Nathan Smith, University of Arizona/NOAO/AURA/NSF).
The middle panels show the images at epochs 2003 March 10 (A), 2010 May 10 (B), and
2011 Feb 6 (C), from top to bottom. The right panels show the difference images C-A and
C-B at the top and middle, respectively. Example light-echo positions are indicated with
blue (epoch A) and red (epoch B and C) arrows. The bottom right panel shows a zoom of
the spectrograph slit, indicated with a blue line. For all panels north is up and east is to
the left.
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Figure 2
Comparison between the historical light curve in visual apparent magnitudes (black circles
and black line), and the recovered light-echo light curves (SDSS i) derived in this work.
Brightnesses from our eight modern images spanning ∼8 years are displayed shifted by
174.2 yrs (green circles), 167.95 yrs (red circles), and 166.28 yrs (blue circles), in order to
illustrate the best-matching time delays for the 1838, 1843, and 1845 outbursts, respec-
tively. The first epoch is an upper limit indicated with an arrow. The upper panel shows
the full time range of the Great Eruption and therefore shows all three potential matches,
whereas the lower panels show the brightnesses from seven of our eight modern epochs
in a magnified time period around each peak.
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Figure 3
Three optical low-resolution spectra of the light echo (black lines). They were taken at
J2000 position RA=10:44:12.127 and Decl.=−60:16:01.69 in March and April 2011 ob-
tained at the Magellan I 6.5-m and du Pont 2.5-m telescopes of the Las Campanas Ob-
servatory, Chile. A log of the spectroscopic observations and details of the spectra is
presented in Table S1. The spectra were reduced using standard techniques and then
wavelength-calibrated using observations of an HeNeAr lamp. The wavelength calibration
was checked and corrected using night-sky emission lines, especially O I 5577Å, and OH
lines in the red part of the spectrum. We flux-calibrated the spectra using a flux standard
observed the same night as the science observations. The left panel shows the spectra
from 5000 to 9000Å. The spectra are not corrected for reddening nor for the blue-ward
scattering by the dust. The blue lines show for comparison spectra of three examples
of SN impostors: SN 1997bs, SN 2009ip, and UGC 2773-OT1. The right panel shows
the Hα and [N II] emission lines. Note that the background emission-line subtraction is
incomplete since they spatially vary. Also, for EC1A Hα is at the edge of the chip and is
therefore uncertain.
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Figure 4 Adaptation19 of an HR
diagram with LBVs, related hypergiant stars, and the peak luminosities of LBV-like erup-
tions. The grey bands denote the typical locations of LBVs in quiescence and in S Do-
radus excursions. Temperatures for the Great Eruption and 1890 eruption of η Car are
based on the echo spectra presented here and the F-type spectrum of the 1890 event23,
respectively. The temperature of 10,000 K for SN 2009ip is based on the observed contin-
uum shape, but this is only a lower limit because of the possible effects of circumstellar or
host galaxy reddening26. Because of the presence of He I lines in the spectrum, the true
temperature is probably much hotter. The 8500 K temperature of UGC2773-OT is indi-
cated by the F-type absorption features in its spectrum, and this temperature is relatively
independent of reddening26,27.
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Figure 5 bla
3D-plot of the light path. North is toward the positive y-axis (up), east is toward the nega-
tive x-axis (left), and the positive z-axis points toward the observer with the origin at η Car.
The red and brown circles indicate η Car and scattering dust, respectively. The parabolic
relation between the spatial parameters of the scattering dust and the time since outburst
is described by the well-known light echo equation31: Assuming a time since outburst
of 169 years, and a distance of 7660 light-years3, we find that the scattering dust is at
a position (x,y,z)=(14,-78,-66) in light-years. The black lines show the path of the light
scattering from the light-echo-producing dust concentrations. The top-right panel shows
an HST image (credit: Nathan Smith / Jon Morse / NASA) of η Car, which is surrounded
by expanding lobes of gas denoted as the Homunculus Nebula visible to the NW and SE.
These lobes were created by the 1838-1858 Great Eruption. We indicate the lobes in the
3D plots with the two cones (Note that the size of the cones is not to scale).
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Figure 6 bla
Spectral type comparison. The stellar comparison spectra are convolved with a Gaussian
of FWHM 7 Å so that their resolution matches those of EC1B and EC1C. Similarly, we
convolve the spectrum EC1A, which has an original resolution of 4Å, with a Gaussian of
FWHM 5.7 Å. We then divide the spectra by the low-order continuum which we deter-
mine by convolving the spectra with a Gaussian of FWHM 200 Å. The upper left panel
compares two of the observed light echo spectra to a selection of UVES supergiants17 in
the 5060-5500 Å wavelength range (We do not show spectrum EC1A since its S/N ratio
in this blue wavelength range is too low). The light echo spectra correlate very well with
late-F and G-type stars, in particular the Mg b lines, and the Ca I, Fe I, Ti I, Cr I blend at
5270 Å. The upper right panel shows the cross-correlation between the light echo and the
UVES spectra in the wavelength range of 5050-6500 Å as calculated by the IRAF routine
xcsao. Since the UVES spectra have a gap around the Ca II IR triplet, we use the Ca II
triplet spectral library18 in that wavelength range, as shown in the bottom left panel. The
bottom right panel shows the blue-shifted velocity determined by xcsao from the Ca II
triplet with respect to the effective temperature30 of the supergiant template spectra.
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Figure 7
The left panel shows the cross-correlation between the light echo and the UVES spectra
as calculated by the IRAF routine xcsao for EC1B (red squares) and EC1C (blue dia-
monds). The lines indicate r(T ) smoothed with a Gaussian of width σ = 300 K, peaking
at 5210 K and 4950 K for EC1B (red) and EC1C (blue), respectively. The right panel
shows the PDF of the best-correlating supergiant temperature, determined by bootstrap
resampling the r distribution 105 times. The 95% temperature confidence intervals are
4850-5550 K and 4450-5400 K for EC1B and EC1C, respectively.
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