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ABSTRACT

We describe a possible new class of X-ray sources that have robust detections

in ultra-deep Chandra data, yet have no detections at all in our deep multi-band

GOODS Hubble Space Telescope (HST) ACS images, which represent the highest

quality optical imaging obtained to date on these fields. These extreme X-ray /

Optical ratio sources (“EXO”s) have values of FX/Fopt at least an order of mag-

nitude above those generally found for other AGN, even those that are harbored

by reddened hosts. We thus infer two possible scenarios: (1) if these sources

lie at redshifts z . 6, then their hosts need to be exceedingly underluminous,

or more reddened, compared with other known sources; (2) if these sources lie

above z ∼ 6 − 7, such that even their Lyman-α emission is redshifted out of
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the bandpass of our ACS z850 filter, then their optical and X-ray fluxes can be

accounted for in terms of relatively normal ∼ L∗ hosts and moderate-luminosity

AGN.

Subject headings: X-rays: galaxies — galaxies: active — galaxies: evolution —

galaxies: high-redshift — surveys

1. Introduction

A key question in astrophysics concerns the evolution of active galactic nuclei (AGN)

during the “quasar epoch” (z ∼ 2 − 3) and at higher redshifts, where their space density

declines (Fan et al. 2001, 2003; Barger et al. 2003). Their evolution appears to track the

star formation rate (e.g., Steidel et al. 1999), thereby suggesting an empirical link between

galaxy growth and AGN fuelling. A connection between galaxies and AGN is also suggested

by the black hole / bulge mass relationship (Ferrarese & Merritt 2000; Gebhardt et al. 2000).

A powerful tool to investigate the physical nature of such relationships is AGN X-ray

emission, which above a few keV can penetrate obscuration around AGN. Ultra-deep X-ray

surveys with Chandra on the Hubble Deep Field North (HDF-N; Brandt et al. 2001), and

Chandra Deep Field South (CDF-S; Giacconi et al. 2002) are sufficiently sensitive to reveal

AGN beyond the tentative reionization epoch (z ∼ 6 − 7, Fan et al. 2001, 2003), where

optical information is no longer available. These surveys also probe more numerous, lower-

luminosity AGN at z ∼ 3 − 6, where ultra-deep optical and near-IR imaging can constrain

their properties.

In this paper we describe a sample of sources with extreme X-ray / Optical flux ratios (or

“EXO”s), that are robustly detected (25−89 counts) in the 2 Msec HDF-N and reprocessed

1 Msec CDF-S main catalogs (Alexander et al. 2003). They are also detected in near-IR

JHK imaging, but completely undetected in our deep GOODS HST/ACS survey, which

to date is the most sensitive and detailed optical imaging of these fields (Giavalisco et al.

2003). We discuss various possible interpretations for these objects. Throughout this paper

we adopt H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7.

2. Observations and Sample Description

We began by matching the X-ray catalogs (Alexander et al. 2003) to our ACS z850

catalogs (Giavalisco et al. 2003); details are in Koekemoer et al. (2003, in preparation) and
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Bauer et al. (2003, in preparation). The matched sources are mostly moderate-luminosity

AGN at z ∼ 0.5−4, or star-forming galaxies at z . 0.5−1 (e.g., Hornschemeier et al. 2001;

Schreier et al. 2001; Alexander et al. 2001; Koekemoer et al. 2002).

The remaining sources were inspected in detail by overlaying X-ray contours on the z850

and the combined B435+V606+i775+z850 images. Most of these had faint optical counterparts,

below the formal 10-σ z850 catalog threshold or undetected in z850 but detected in another

band (perhaps high equivalent width Lyman-α emitters). Detection in z850 or bluer bands

suggests these sources are at z . 6 (Barger et al. 2003; Cristiani et al. 2003).

Finally, there remained sources with no ACS counterparts within 2.′′4 (& 10 times the

positional uncertainty) in z850 and the combined B435+V606+i775+z850 images, despite robust

detections in the X-ray main catalogs (25 − 89 counts). We focus on CDF-S where we have

complete ACS and near-IR coverage; HDF-N sources will be discussed separately (Koekemoer

et al. 2003, in preparation). Five of these 7 CDF-S sources have fairly well behaved X-ray

exposure maps; the other two are still detected in JHK thus are likely also real. The

sources are also at a wide range of off-axis angles in the Chandra image. We computed z850

upper limits from the pixel r.m.s. (0.0017 − 0.0024 counts s−1 pixel−1), integrated over a

0.′′2×0.′′2 aperture (4×4 ACS-pixel box), to yield 3-σ upper limits11 of z850 ∼ 27.9−28.4 (AB

magnitudes).

3. “EXO”s: Extreme X-ray / Optical Ratio Sources

The 7 sources with no ACS counterparts are shown in Figure 1. We carried out pho-

tometry at the X-ray positions, and present the ACS upper limits and near-IR detections

in Table 1. To further investigate the nature of these sources, we examine the relationship

between their X-ray and optical fluxes (e.g., Maccacaro et al. 1988; Stocke et al. 1991).

In Figure 2 we plot F0.5−8 keV versus z850 for all the X-ray sources, including the ACS non-

detections, also showing lines of constant FX/Fopt (derived from z850). At soft X-ray energies

this ratio is complicated by absorption and thermal gas emission (e.g., Beuermann et al.

1999) but these no longer dominate above a few keV, which is redshifted into the soft band

for z & 1 − 2. Sources with FX/Fopt & 0.1 − 10 are generally identified with AGN; these

deep X-ray data also reveal normal galaxies and starbursts (e.g., Hornschemeier et al. 2003)

with FX/Fopt extending a few orders of magnitude below AGN, but at z850 & 24 these are

lost from the X-ray sample and the AGN dominate.

11Using the same zeropoints as Giavalisco et al. (2003).
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Figure 2 also reveals that our z850-undetected objects occupy the high end of the FX/Fopt

plane, above most of the detected optically faint sources. This is interesting since it is not

expected a priori that optically undetected objects should have strong X-ray flux. We also

plot our measured ACS magnitudes for CDF-S sources reported as undetected in ground-

based data by Yan et al. (2003), and show Extremely Red Objects (EROs) from previous

studies (Alexander et al. 2002; Stevens et al. 2003).

In Figure 3 we plot FX/Fopt against z850 − K; the normal galaxies and starbursts with

FX/Fopt . 0.1 − 1 are blue, while the only objects with z850 − K > 4 are those with high

FX/Fopt (see also Brusa et al. 2002; Cagnoni et al. 2002). Not all the high FX/Fopt objects

are red; some are blue, with z850 −K ∼ 0− 2, and are likely unobscured AGN. However, at

high FX/Fopt we also find the reddest objects, with most of our undetected z850 sources at

the extreme end with z850 − K & 4.2 − 6.2.

4. Possible Constituents of the “EXO” Population

We now examine various possibilities for these sources in order to explain: (1) deep

optical non-detection; (2) robust X-ray detection; and (3) extremely red colors. We rule

out main-sequence stars as these typically have FX/Fopt ∼ 10−5
− 0.1 (e.g., Stocke et al.

1991). More exotic galactic sources include low-mass X-ray binaries, cataclysmic variables,

or neutron stars, which generally have LX ∼ 1030
− 1035 erg s−1 (e.g., Verbunt & Johnston

1996 and references therein). At distances ∼ 10 − 100 kpc they would have X-ray fluxes

. 10−14 erg s−1 cm−2, consistent with what is observed. However, the number of sources

in our small survey area would imply total counts ∼ 104
− 105 times above what is known

for our galaxy (e.g. Howell & Szkody 1990; Alexander et al. 2001). Thus we turn to an

extragalactic origin for the EXOs.

Low-luminosity galaxies can host relatively luminous X-ray sources, for example the

local dwarf NGC 4395 (MB ∼ −16.5) with a central X-ray source L2−10keV ∼ 3×1038 erg s−1

(Ho et al. 2001). However, such objects do not have the extremely red colors of our sources.

Moreover, our z850 limits would imply a distance modulus & 45.3 mag, hence LX & 3 ×

1042
− 8 × 1043 erg s−1, at least 104 times above those for such dwarfs locally. It would be

highly interesting if the EXOs were low-luminosity dwarfs with such extreme AGN, but since

we know of no local analogs, we explore other alternatives.
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4.1. Evolved Galaxies

A possible alternative is that the EXOs may be at moderate redshifts and extremely

evolved. At z ∼ 1, 2, 3, 4, 5, 6, the oldest possible populations (5.7, 3.2, 2.1, 1.5, 1.2, 0.9 Gyr)

would have observed colors z850 − K ∼ 1, 4, 4.5, 3.5, 3.2, 3 respectively, for a single-burst

model with 0.3 solar metallicity (Charlot & Bruzual 2003, in preparation). At least ∼1 − 2

magnitudes of extinction would be required since we observe no UV excess. These properties

are comparable to those derived for other X-ray ERO’s (e.g., Alexander et al. 2002; Brusa et

al. 2002; Stevens et al. 2003). However, it is interesting to note that the K-band magnitudes

are ∼ 100 times too low compared to what is needed to place these objects on the MBH − σ

relation (see Woo & Urry 2002).

4.2. Dusty Galaxies

We next explore the amount of dust needed to achieve the high z850 −K colors. If these

sources were local (z . 0.1), then z850 − K & 4.5 would imply AV & 10 − 14 (Rieke &

Lubofsky 1985; Calzetti 1997), depending on the stellar populations. This would require a

column NH & 2 − 5 × 1022 cm−2 ratio, which is too high for the observed soft X-ray fluxes

unless we invoke a highly interesting scenario where the AGN is unobscured while the rest

of the galaxy is completely obscured.

At higher redshifts, the AV limits decrease since z850 and K sample bluer rest-frame

wavelengths. Between z ∼ 1 − 2.5 we infer AV & 5 − 2 respectively, comparable to similar

objects discussed by Alexander et al. (2002); Smail et al. (2002); Stevens et al. (2003), and

Yan et al. (2003). Again it is interesting that the EXO host luminosities at these redshifts,

from their K magnitudes, would place them at least 2 orders of magnitude away from the

MBH − σ relation implied by their X-ray fluxes, suggesting atypical accretion rates (Woo &

Urry 2002).

4.3. High-Redshift Lyman Break Galaxies

Finally we investigate the possibility that these sources are at high enough redshifts to

move the Lyman break out of the z850 filter. Yan et al. (2003) investigated similar possibilities

for their CDF-S sources undetected in ground-based R imaging but detected with ISAAC.

We have in fact detected their sources in our ACS z850 data (Figure 2) and agree with them

that those sources are unlikely to be at z & 5. However, their sources are the only ones with

FX/Fopt comparable to our EXOs. Thus, if the EXOs belong to the same population as the
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Yan et al. (2003) sources, then their distance modulus is & 1.5−2 magnitudes higher. If the

Yan et al. (2003) sources are luminous E/S0 galaxies with z ∼ 1 − 2.5, this would translate

to z ∼ 2.5−6 for the EXO population. The other possibility considered by Yan et al. (2003)

is that their sources may be higher redshift AGN up to z ∼ 3 − 5, depending on extinction

details. If EXO’s are the high redshift extension of this population, this would place them

at z ∼ 6 − 10. In this case, their host galaxy absolute magnitudes (from our K-band data)

would be −20 to −21, comparable to ∼ L∗ luminosities, while their X-ray luminosities would

be ∼ 2 − 6 × 1044 erg s−1. These are not unusually high luminosities for AGN, and may

be consistent with a high-redshift extension of moderate-luminosity AGN at z ∼ 3 − 5 (eg

Cristiani et al. 2003).

5. Conclusions

We have examined various possible explanations for a population of obejcts that have

extreme X-ray / Optical ratios (“EXO”s), being robustly detected in the Chandra data in

CDF-S and HDF-N, yet completely undetected in our deep multi-band B435+V606+i775+z850

ACS images, which represent the most sensitive optical imaging obtained to date on these

fields. In particular, the lack of detections even in the z850 band suggests one of two possible

scenarios: (1) if these sources lie at z . 6−7, then their hosts are unusually underluminous,

or more reddened, compared with other known AGN hosts (even other ERO’s); (2) if these

sources lie above z ∼ 6 − 7, such that even their Lyman-α emission is redshifted out of

the ACS z850 bandpass, then their optical and X-ray fluxes can be accounted for in terms

of ∼ L∗ hosts and moderate-luminosity AGN. Deep near-IR spectroscopic observations will

help further elucidate their nature.
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Fig. 1.— The 7 CDF-S X-ray sources with no ACS counterparts, also showing the

SOFI JHK detections. Each panel is 15′′ on a side. Contours show 0.5 − 8 keV

Chandra data, starting at 1,2,3-σ, and doubling thereafter. For the full image, see

http://www.stsci.edu/∼koekemoe/goods-exo/
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Fig. 2.— Total X-ray flux (0.5 − 8 keV) against z850 magnitude for all the X-ray sources,

including those unidentified in z850 (indicated by diamonds with arrows). Lines indicate

FX/Fopt = 0.1, 1, 10. Symbol shading shows the z850 −K colour of each source, ranging from

light to dark for z850 − K ∼ 0 − 5. White symbols (no shading) were undetected in K.

Squares show our measured ACS magnitudes for sources reported as undetected in ground-

based data by Yan et al. (2003), and triangles indicate X-ray selected EROs in the Lockman

Hole (Stevens et al. 2003).
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Fig. 3.— Ratio of F0.5−8 keV to z850 for all the X-ray sources, plotted against z850 − K.

Symbol shapes are as in Figure 2; however shading represents z850, fainter sources being

darker. Normal galaxies and starbursts (FX/Fopt . 0.1− 1) are relatively blue, and that the

only redder objects are those with higher FX/Fopt.
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Table 1. Optically Undetected X-Ray Sources

R.A.a Dec.a Total counts F0.5−8keV z850 J H K

(J2000) (J2000) (0.5 − 8 keV) (erg s−1cm−2)

03 32 08.39 −27 40 47.0 89+15
−14 4.3 × 10−15 >27.9 25.2±1.3 23.3±0.2 24.8±1.1

03 32 08.89b
−27 44 24.3 27+9

−8 3.8 × 10−16 >28.3 >25.9 24.8±0.5 23.8±0.6

03 32 13.92 −27 50 00.7 44+9
−8 6.1 × 10−16 >28.3 23.9±0.4 22.7±0.1 22.4±0.2

03 32 20.36 −27 42 28.5 42+11
−10 8.7 × 10−16 >28.3 >25.9 >25.1 >25.0

03 32 25.83 −27 51 20.3 25+7
−6 3.3 × 10−16 >28.4 >25.9 >25.1 23.3±0.4

03 32 33.14 −27 52 05.9 44+9
−7 5.9 × 10−16 >28.4 25.7±1.1 24.8±0.5 25.4±1.5

03 32 51.64 −27 52 12.8 45+11
−9 1.3 × 10−15 >28.4 >25.9 24.1±0.3 23.5±0.6

aPositions for the X-ray sources, from Alexander et al. (2003).

bThis source was also optically undetected by Yan et al. (2003); note that we detect their other

sources in our z850 data.
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