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Astrophysics Quantum Applied Technologies

1. Ultra-sensitive Photon Detection — Detect faint and distant sources with MKIDs, SNSPDs, TESs, and
Microcalorimeters
a) Super-Resolution (DARPA Program -> TRL3)
b) Absolute Calibration
c) Exoplanet Detection (w/o Coronagraph)

2. Quantum-Enhanced Telescopes
a) Quantum Processing Enhanced Optical Imaging — By coherently encoding photonic amplitude information
into qubit registers and applying quantum algorithms prior to detection (Harvard, GSFC, & Quera) [TRL3]
b) Utilize entangled photons for very long baseline interferometry promises improved imaging of astronomical
objects and remote sensing, potentially allowing for higher resolution and deeper insights into cosmic
structures (U. Maryland, U. Arizona & GSFC). [TRL1]

3. Precision Gravity Measurements
a) Quantum gravity gradiometers based on atom interferometry can detect gravitational fields with extreme
accuracy. This can offer insights into the nature of stochastic gravitational waves, Dark Matter and Dark
Energy. (Standford U., UC Berkeley, Fermi Lab, GSFC). [TRL3]
b) Optical quantum clocks to detect gravitational potential. (NIST, U. Colorado, GSFC). [TRL3]
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Quantum Hypothesis Testing for Exoplanet Detection

Ziin Huang and Cosmo Lupo
Phys. Reu Lett 127, 130502 - Published 23 September 2021

PHYSICAL REVIEW LETTERS 129, 180502 (2022)
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Identifying Objects at the Quantum Limit for Superresolution Imaging

Experimental demonstration of a quantum-optimal
coronagraph using spatial mode sorters
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Correlated-Photon Metrology for
Photo-Detector Absolute Calibrations

Extracting information from weak optical signals is a critical challenge across a broad range
of technologies. Classical techniques, constrained to intensity measurements and post-processing, DOE 10.1103/PhvsRewd 21t 129 180507
face fund al limits in signal-to-noise ratio (SNR) from the need of tomographic methods and
shot noise accumulation in the post-processing. We show that by coherently encoding photonic
amplitude information into qubit registers and applying quantum algorithms prior to detection
these limitations can be overcome. As a concrete example, we develop a quantum algorithm for
imaging unresolved point sources and apply it to exoplanet detection demonstrating that orders-of-
magnitude improvements in performance can be achieved under realistic imaging conditions.

Adaptive Super-Resolution Imaging Without Prior
Knowledge Using a Programmable Spatial-Mode Sorter
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The ability to extract information from faint light

sources is vital across a wide range of applications, in-

cluding molecular imaging [1], satellite surveillance [2],

W, =N AN, and astrophotography [3-7]. Enhancing key perfor-
mance metrics, such as resolution and signal-to-noise ra-

Quantum processor
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We consider an imaging system tasked with estimating

tion constraint often referred to as the Rayleigh limit (fcs) [2],
beyond which the features of the scene become exceedingly hard

(T riggee)

Twin-photon techniques for photo-detector calibration, G. Brida et al. 2008, Laser Physics Letters, 3, 115
Absolute calibration of a charge-coupled device camera with twin beamns, A. Meda, et al. 2014, Appl. Phys. Lett. 105, 10113

tio (SNR), is essential to improve image quality and ex-
pand the scope of observable phenomena. Such improve-

In conventional optical imaging systems, the recorded
Aata are tynicallv limited ta intencity messirements

" the angular distance between two incoherently-emitting

L 2

sub-Rayleigh-separated point sources, without any prior
knowledge of the centroid of the constellation and with

mean squared error in estimating the separation [1]. In
this paper, we demonstrate this in proof-of-concept, us-
ing a programmable mode sorter we have built using
multi-plane light conversion (MPLC) using a reflective
spatial-light modulator (SLM) in an emulated experi-
ment where we use a single coherent source to character-

to resolve. The limitation in resolution stems from diffraction
effects arising due to the finite aperture of the imaging system,

- — Y | I a fixed collected-photon budget. It was shown theo-  asillustrated in Fig.1. For a telescope-like system with a circular
ments could deepen our understanding of molecular dy- Sy -aEm-L= retically that splitting the optical recording time into  aperture,this limitis defined as follows:
i ble the detection of distant ast ical ob- . [A]| wawogiww two stages—focal-plane direct imaging to obtain a pre- At
namics, enable the detection of distant astronomical o —b osooceo — 1 H A —A estimate of the centroid, and using that estimate to cen- Ores =122x =27, m
; ; van ientific di 0000006 - - — A ter a spatial-mode sorter followed by photon detection
Physics Today, January 1999, 41 jects, and advance scientific discovery more broadly. ; 5 0000 eD of !hel:oned modes—can achieve anl: 100 times lower ~ Where A is the wavelength of the incoming light, fis the focal

length of the optical system, and D is the diameter of the
entrance pupil of the optical system, which is dictated by
the finite circular aperture. An analogous diffraction limit is
encountered in microscopy due to the finite numerical aperture
of a circular objective lens.
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https://www.nature.com/articles/s41467-019-09840-4

https://journals.aps.org/prx/pdf/10.1103/PhysRevX.6.031033
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Quantum processor-enhanced imaging

Sketch of a quantum processing enhanced

imaging system. Step 1: The quantum state of the light
collected through the optics is is mapped to a qubit
register in a heralded way by means of qubit-photon
controlled gates followed by joint detection of the
photonic modes. Step 2: For a weak optical signal where
only a single photon is coherently distributed across the
detection modes, the information can be compressed
into a logarithmic number of processing qubits using a
unary-to-binary encoding. Step 3: Quantum processing
of the received light to extract the parameters of
interest with higher SNR than possible from classical
direct detection and post-detection processing.

Step 1 Step 2

Step 3

Quantum processor
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Quantum Gravity Gradiometer for Gravity Measurements

A space-time diagram of the proposed
configuration of a differential measurement
between two atom interferometers beginning
at positions x, and X,.

This figure represents two atom
interferometers. Combined, they become a
quantum gravity gradiometer.

Used for: static, dynamic, mergers, dark energy, dark
matter, and stochastic gravitational wave signals

journals.aps.org/prl/pdf/10.1103/PhysRevLett.110.171102
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