Downscaling Soil Moisture Using Time-Specific
Adaptable Machine Learning Models
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ABSTRACT

Soil moisture is a key element in understanding Earth’s systems

dynamics. Soil moisture information in a fine-resolution gridded format
and on short periods that consider seasonal changes and standardization

of input data has not been explored widely. We use Random Forest to
downscale coarse-resolution satellite-derived soil moisture estimates

(0.25 deg) based on their relationship with a set of static and dynamic
covariates used as predictors. We provide surface soil moisture (0-5cm
depth) estimates at 250 m of spatial resolution on 16-day periods from
mid-2002 to December 2020 at a subcontinental level through the North
America Soil Moisture Dataset Derived from Time-Specific Adaptable
Machine Learning Models (NASMo-TiAM 250 m). NASMo-TiAM 250 m
predictions are evaluated through cross-validation with ESA CCI reference
data and independent ground-truth validation using North American Soil
Moisture Database (NASMD) records. We found a correlation coefficient
and RMSE derived from cross-validation of 0.91 and 0.03m *m™
respectively. For ground-truth validation, we found an overall correlation of
0.4 and an RMSE of 0.11 m*m™ Additionally, we observed a correlation of
0.38 and RMSE of 0.12 m®m™3 between reference ESA CCI data and
NASMD. NASMo-TiAM provides a curated soil moisture dataset and a
flexible workflow with the potential for executing alternative machine--

learning approaches with different sets of predictors.



WORKFLOW AND INPUT DATA COLLECTION
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Figure 1 - Workflow for downscaling soil moisture
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Figure 2 - Input data collection
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DATA VALIDATION
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Figure 3 - Cross-validation results between ESA CCI reference data and RF soil moisture predictions at 250 m. (a)
Climate zones of North America and the total number of points used for validation along the study time frame (2002-
2020); (b) Distribution of correlation and RMSE values per climate zone; (c) Terrestrial ecoregions of North America
and the total number of validation points along the study time frame (2002-2020); (d) Distribution of correlation and
RMSE values per terrestrial ecoregion.
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Figure 4 - (a) Distribution of 864 NASMD stations used for ground-truth validation; (b) ESA CCI mean soil moisture
values derived from 426 biweekly layers; (c) RF predictions mean soil moisture values derived from 426 biweekly
period; (d) Mean cross-validations residuals; (¢) Mean residuals for 257 biweekly periods between ESA CCI and
NASMD data; (f) Mean residuals for 257 biweekly periods between RF predictions and NASMD data.



NASMO-TIAM DATASET

NASMo-TiAM (North America Soil Moisture Dataset Derived from Time-
Specific Adaptable Machine Learning Models) dataset holds gridded
estimates of surface soil moisture (0-5 cm depth) at a spatial resolution of
250 meters over 16-day intervals from mid-2002 to December 2020 for
North America. The model employed Random Forests to downscale
coarse-resolution soil moisture estimates (0.25 deg) from the European
Space Agency Climate Change Initiative (ESA CCI) based on their
correlation with a set of static (terrain parameters, bulk density) and
dynamic covariates (Normalized Difference Vegetation Index, land surface
temperature). NASMo-TiAM 250m predictions were evaluated through
cross-validation with ESA CCI reference data and independent ground-
truth validation using North American Soil Moisture Database (NASMD)

records. The data are provided in cloud optimized GeoTIFF format.
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Figure 5 - Soil moisture across North America at 250 meters resolution biweekly.
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