Quantum Leap: Evaluating the Feasibility of Quantum
Machine Learning With NASA Earth Observational Data
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ABSTRACT

Recent strides in quantum computing have permeated diverse domains, spanning from manufacturing engineering
and pharmaceutical discovery to the latest frontier of detecting climate anomalies. With the potential to
substantially reduce time and computational complexity, quantum computing shows promise in addressing climate
change impacts. Its distinctive features enable the concurrent exploration of expansive solution spaces, making it
well-suited for analyzing extensive climate datasets, simulating intricate climate models, optimizing resource
allocation, and discerning patterns in climate data for mitigation and adaptation endeavors. This study explores the
potential of using Quantum machine

learning (QML) techniques on climate and weather data obtained from NASA Giovanni*. We explored two QML
algorithms, the Quantum Support Vector Classifier (QSVC) and the Variational Quantum Classifier (VQC)
models, using the IBM Qiskit* Machine Learning 0.7.2 ecosystem*. The methodology and results sections
describe the experiences gained from applying and evaluating quantum machine learning results on climate and
weather data obtained from NASA satellites as a novel practical application of quantum computing.



CLASS LABELS GENERATION & BINARY CLASSIFIER

* Import Data from NASA Giovanni

» Conduct Exploratory Data
Analysis

* Implementation of Classical
Binary Classification Models

Import

* Quantum Encoding: Encode classical
Encode data into the amplitudes of quantum
states using IBM Qiskit library.

» Implement QSVC and the VQC models

* Run models on IBM Quantum Simulator

* Run models on IBM 127 qubits real
Quantum Computer

Evaluate

Downloaded data in netCDF data format and clean and preprocessed by removing the "fill-values" etc, and
converted the cleaned data to NumPy arrays using the Python SciPy libraries [3,4].

Converted NumPy arrays were used for data embedding for QML applications.

Binary Classifier:

We programmatically generated the labels as “Hot(Warm)” or ”Cold(Cool)” to conduct the binary classification
task.

If ”Soil Temperature” value > 295 K a labeled as “Hot(Warm) ==1”

If the ”Soil Temperature” < 295 K, a labeled it as “Cool == 0.

295 Kelvin is 71.3 Fahrenheit (21.85 Celsius).



COMPUTING APPROACHS

Quantum Computing Approach:

We assessed the quantum utility using IBM_Rensselaer, a 127-qubit quantum computer (IBM Eagle quantum
processor) and IBM quantum computing simulator [2].s

We then conducted Quantum Machine learning (QML) based binary classifiers using real-world NASA Earth
observational satellite data and compared the results with classical ML models.

Quantum Machine Learning Models:

e Quantum Support Vector Classifier (QSVC)
e Variational Quantum Classifier (VQC)

Classical Machine Learning Models:

We conducted the classical machine learning using the Python-based Sckit-learn library [3] using the following
models

e SVM model - linear kernel
e SVM — Radial Basis Function

e SVM — Polynomial Kernel

e Gaussian Naive Bayes model



QUANTUM CIRCUIT

Approach: Two Qubits-based Quantum Circuit.

IBM Qiskit Machine Learning 0.7.2 Ecosystem
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e We Used the ZZFeatureMap function from giskit.circuit.library and set the feature dimension to value
two.

o The number of Independent Variables (IVs) are equal to the number of qubits (feature dimension) in our
design.

e Weused the FidelityQuantumKernel class, which utilizes the BaseStateFidelity algorithm from
Qiskit.

e The FidelityQuantumKernelclass simplifies the computation of kernel matrices for specific datasets
and can be integrated with a Quantum Support Vector Classifier (QSVC).

o We Used the ZZFeatureMap function from[lqiskit.circuit.library, and set feature dimension to value two.

o We set the entanglement parameter tol|”’linear” and made the reps parameter to the valuel/two. Along wih
Sampler () function and using the[JFidelityQuantumKernel.

o We generated the feature map shown in the figure using the draw () function available in the Qiskit library.



DATASETS

Variable Units Source Temp.Re Spat.Res.
MERRA-2
Reanalysis

MERRA-2
Reanalysis

MERRA-2
Reanalysis

Total surface precipitation (M2TMNXFLX v5.12.4) Monthly

Surface soil wetness (M2TMNXLND v5.12.4)

Monthly

Soil temperatures layer 1 (M2TMNXLND v5.12.4) Monthly

We used the NASA Giovanni tool to obtain the data [6].

Time-averaged maps of the three variables over Texas from May 2016 to October 2021 were plotted using
Giovanni’s mapping tool.
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(a) Time Averaged Map of Total surface
precipitation monthly 0.5 x 0.625 deg.
IMERRA-2 Reanalysis M2TMNXFLX
v5.12.4] kg m-2 s-1 from 2016-May to
2021-October, over Texas.



(b) Time Averaged Map of Surface
soil wetness monthly 0.5 x 0.625 deg.
[MERRA-2 Reanalysis M2TMNXLND
v5.12.4] from 2016-May - 2021-Octobeer,
over Texas.
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(¢) Time-averaged map of soil tem-
peratures for Layer | (monthly, 0.5 x
0.625 deg) from the MERRA-2 Reanalysis
(M2TMNXLND v5.12.4) in K, from May
2016 to October 2021, over Texas.
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Dataset 1

Total
Surface
Precipitation| Featu
(MERRA-2

Reanalysis)

Dataset 2

Surface Soil
Wetness
(MERRA-2
Reanalysis)

Feature 2

Dataset 3

Soil
Temperature
(MERRA-2

Reanalysis)

Exploratory Data

Analysis

Conduct Classical
Machine Learning

Conduct Quantum
Machine Learning

(QML)




Precision Recall Fl-score Support

0 0.82 0.95 0.88 39

1 0.75 0.43 0.55 14

accuracy 0.81 53
macro avg 0.79 0.69 0.71 53
weighted avg 0.80 0.81 0.79 53

Table 1: Performance Metrics for Classical ML with SVM model linear kernel

Precision Recall F1-Score Support

0 0.80 0.85 0.83 39
1 0.50 0.43 0.46 14
accuracy 0.74 53
Mmacro avg 0.65 0.64 0.64 53
weighted avg 0.72 0.74 0.73 53

Table 2: Performance Metrics for Classical SVM — Radial Basis Function

Precision Recall FI1-Score Support

0 0.80 1.00 0.89 39
1 1.00 0.29 0.44 14
accuracy 0.81 53
macro avg 0.90 0.64 0.67 53
weighted avg 0.85 0.81 0.77 53

Table 3: Performance Metrics for Classical SVM — Polynomial Kernel

Precision Recall FI1-Score Support

0 0.74 1.00 0.85 39
1 1.00 0.00 0.00 14
accuracy 0.74 o3
macro avg 0.87 0.50 0.42 53
weighted avg 0.81 0.74 0.62 53

Table 4: Performance Metrics for Classical Gaussian Naive Bayes model



Precision Recall Fl-score  Support

0 0.75 1.00 0.86 39

1 1.00 0.07 0.13 14

accuracy 0.75 53
macro avg 0.88 0.54 0.50 53
weighted avg 0.82 0.75 0.67 53

Table 5: Performance Metrics for QSVC Classifier on IBM Qiskit Simulator



CONCLUSION

This study evaluated various classifiers, including classical Support Vector Machines (SVM), Quantum Support
Vector (QSVC), and Variational Quantum Classifiers (VQC) on an IBM quantum simulator and on the real 127-
qubit IBM Quantum Computer, using NASA Earth Observational data utilizing the IBM Qiskit Machine Learning
0.7.2 ecosystem [1].

Our two quantum classifiers were able to reasonably predict well the class labels using only two qubits quantum
circuits.

The difference between the best-performing classical ML model and QML models is 0.6 (6%). [

Overall, this analysis highlights the strengths and weaknesses of the two different QML models and the
applicability of quantum computing technology using EO data.
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