

Deep Space Network Updates

Presented to: Planetary Sciences Advisory Committee Presented by: Dr. Jeffrey Hayes Discipline Scientist, Science Mission Directorate On Detail to the Space Communications and Navigation (SCaN) organization Space Operations Mission Directorate National Aeronautics and Space Administration November 14, 2023

Scan Space Communications and Navigation Exploration, enabled.

Outline

About SCaN

DSN Status, Challenges, and Plans

Enabling Human Space Exploration and Science

Deep Space Network (DSN)

DSN's Role and Structure

DSN is the only US network dedicated to providing telecommunications services for missions beyond LEO

DSN also supports international spacecraft and scientific investigations (radar, radio astronomy and radio science)

DSN has three complexes, spread across the world to ensure 24/7 coverage

The NASA Jet Propulsion Laboratory (JPL) develops, operates, and manages DSN

Canberra

Deep Space Communications are Key to Agency Priorities

	_문 DSN	Mission Dashboard	October 2023	(Updated Monthly	Contact S. Asmar)
	Completed	Current 20+22 = 42		Future 15+26 = 41	
#	Since 2019	Deep Space	Cis-Lunar, Lagrange,	Deep Space	Cis-Lunar, Lagrange,
1	InSight Mars	Juno Jupiter	Lunar Recon. Orb. Lunar	VERITAS Venus	SunRISE
2	Mars Cube One InSight Cube	Lucy Asteroids	SOHO Helio L1 NASA-ESA	DAVINCI+ Venus	GOES U
3	DART Asteroid	Perseverance Mars	ACE Helio L1	Dragonfly Titan	SWFO L1
4	LICIA (ASI) DART Cube	Mars Odyssey Mars	Wind Helio L1	Europa Clipper Jupiter 2024	IMAP L1
5	GOES T	Mars Recon. Orb. Mars	MMS 1 Earth Ellip. Orb.	ESCAPADE Blue Mars	Carruthers L1
6	Geotail	MAVEN Mars	MMS 2 Earth Ellip. Orb.	ESCAPADE Gold Mars	Astrobotic Peregrine Lunar
7	Artemis 1 Lunar	Curiosity Mars	MMS 3 Earth Ellip. Orb.	Sample Return Land. Mars	Astrobotic Griffin Lunar
8	NEA Scout Cube	New Horizons	MMS 4 Earth Ellip. Orb.	Earth Return Orb. (ESA) Mai	Lunar Node-1 CLPS Lunar
9	CuSP Cube	OSIRIS-REx (APEX)	Themis B Helio L1	Rosalind Franklin (ESA) Mar.	Lunar Trail Blazer Mar 2024
10	LunaHMAP Cube	Parker Solar Probe Helio	Themis C Helio L2	EnVision (ESA) Venus	VIPER Lunar
11	Lunar Ice Cube	Voyager 1 Helio	DSCOVR L1	HERA (ESA) Asteroid	Artemis-2 Orion
12	Team Miles Cube	Voyager 2 Helio	Chandra HEO	DESTINY+ (JAXA) Asteroid	Artemis-3 Orion
13	ArgoMoon (ASI) Cube	STEREO A Helio	JWST L2	MMX (JAXA) Mars (L 2024)	Exploration Upper Stage
14	Omotenashi (JAXA) Cube	Akatsuki (JAXA) Venus	TESS Earth Ellip. Orb.	Emiratres Asteroid (UAE)	Gateway Lunar
15	Equuleus (JAXA) Cube	Hayabusa-2 Ext (JAXA) Astero	CAPSTONE Cube	Rocket Lab Venus	Human Landing Sys 1
16	INTEGRAL (ESA)	BepiColombo (ESA)	TDRS 6-13 emergency		Human Landing Sys 2
17	Hayabusa-2 Prime (JAXA)	Trace Gas Orb. (ESA) Mars	Biosentinel Cube		Human Landing Sys 3
18	Beresheet (Israel) Lunar	Mars Express (ESA)	Lunar Flash Light Cube		Blue Origin Mark-1 SN-1
19	Mars Orb. Mission (ISRO)	Emirates Mars (UAE)	XMM (ESA) Earth Ellip. Orb.		Blue Origin Mark-1 SN-2
20	Chandrayaan 2 Land. (ISRO)	Psyche Asteroid	Gaia (ESA) L2		Lunar Terrain Vehicles
21	Chandrayaan 2 Orb. (ISRO)		KPLO (KARI) Lunar		Beresheet-2 (Israel) Lunar
22	Chandrayaan 3 Land. (ISRO)		SLIM & LEV (JAXA) Lunar		Roman Telescope L2 2027
23					NEO Surveyor L1 2027
24					Oracle-P Air Force L1 2025
25					Astrobotic third lander
26					LUPEX (JAXA/USRO)

NASA's Communications Networks

The DSN Challenge: Rapidly Growing User Needs

Cadence and complexity of cis-lunar and SMD missions are creating a new level of network demand not seen in decades

- New technologies to achieve Decadal Survey priorities are ever more data hungry
- JWST alone uses 10% of DSN capacity; sending back 25x the data of Hubble
- Infrastructure support has not kept up

DSN Challenge: Demand Spikes During Artemis

Artemis-I + Deep Space CubeSat Support: DSN Impacts

Impact (antenna hours by mission) of EM1 Nov16 launch schedule on 2022 weeks ['2022-46', '2022-47', '2022-48', '2022-49']

How SCaN Plans to Support DSN Users

New Deep Space Network (DSN) Capacity & Upgrades

- Building six 34m antennas across all three DSN complexes
- Upgrading two DSN antennas at each complex to enable simultaneous operations, enhance uplinks, and increase data rates

Network of new 18-meter class antennas to support lunar missions

Starting with three government owned, commercial operated sites

Commercial LEGS will add additional capacity as demand grows

Lunar Exploration Ground Segment (LEGS)

Commercial and International Partners

Optical and other New Technologies

- Further drawing upon commercial service procurement to devielop lunar relays to reduce user PNT burden and remove DTE line-of-sight constraints (enabling South Pole and Far-Side operations)
- Seeking additional commercial and international contributions for both Earth based and Lunar C&N assets
- Optical will reduce burden on DSN alongside other technologies
- Priority 1: Direct-to-Earth assets that meet or exceed LEGS performance
- Priority 2: Lunar relay comm and PNT services

around the Earth, offering continuous coverage

Priority 3: Lunar surface comm and PNT capabilities

DSN Upgrades: The Road to Green (R2G)

DSN Upgrades: DSN Aperture Enhancement Project (DAEP)

- DAEP is building six 34m Beam Wave Guide (BWG) antennas across all three DSN complexes to provide additional capacity
- □ FY2024 DAEP STATUS SNAPSHOT:
 - Four 34m BWG deliveries completed (Two in Canberra and two in Madrid)
 - One 34m BWG in process in Goldstone; Delivery to service April 2026
 - One 34m BWG in the future at Canberra; Delivery to service expected October 2029
- Further expansion after FY30 will be based on a DSN Futures Study, Agency requirements, and available support
 - May include higher power transmitters, HEF antenna refurbishments, and site diversity measures
 - Post-FY30 development work is funding dependent

DSN Upgrades: DSN Lunar Exploration Upgrades (DLEU)

Upgrading six DSN antennas (two at each of the three complexes)

Adds capability for near-earth K-band uplink, uplink encoding, and increased data rates (100Mbps+ in Ka)

Provides simultaneous operations across frequency bands – S+Ka-band, X+Ka-band, or simultaneous Ka

Two upgrades completed (Goldstone and Canberra)

Estimated completion dates for additional upgrades:

- □ Goldstone: December 2023
- □ Canberra: July 2024
- □ Spain (DSS-56): April 2025
- □ Spain (DSS-54): March 2028

Lunar Exploration Ground Segment (LEGS)

LEGS is a new network of DTE antennas that reduce contention for DSN by absorbing new Artemis demands

LEGS 1 to 3:

- □ Cover three geographically diverse sites, offering continuous lunar coverage
- □ 18-meter class performance in X and Ka
- Government-owned / contractor operated

LEGS 4+:

- □ Locations TBD
- □ 18-meter class performance in X, Ka and S
- Being pursued under full commercial services procurement

LEGS Site #1: White Sands Complex (WSC) Government: NASA/GSFC Target Readiness Date: Gateway Launch Single X/Ka Transmit/Receive Antenna

> LEGS Site #2: MTJ, South Africa Government: SANSA Target Readiness Date: Gateway Launch Single X/Ka Transmit/Receive Antenna

Representative/ potential commercial locations that may be proposed in response to the NSN procurement to add LEGS capability with S, X, Ka band services

LEGS Site #3: Geraldton, Australia Government: ASA, ASD Target Readiness Date: Gateway Launch Single X/Ka Transmit/Receive Antenna

DSN Futures Study

DSN Futures Study objectives:

- Look at near-term issues (network scheduling efficiency, network and element brittleness, and fragility), and projected capability needs though 2050
- Understand what probable technology will be available, when it could be infused into the DSN, and the required costs

Incorporating SMD (Decadals) and ESDMD (Lunar and Mars architectures) as long-term planning inputs

Study Team members include NASA stakeholders from ESDMD, SMD, and SOMD that are asked to review study progress on a quarterly basis

Plan is to bring the final report to this board for review

Orchestration of Supply

O&M and sustainment must be orchestrated around mission demands and capability variance is 1:1 with funding variance

Synopsis: The Future of SCaN

New Challenges and New Opportunities

□ Growing DSN demand is putting flagship SMD and SOMD missions at risk

□ Investment in reliability, robustness, and capacity will be necessary to secure DSN's future

LEGS government and commercial investments can also offload some Artemis and CLPS requirements from DSN, alongside international partnerships

lational Aeronautics and Space Administration

SCaN Space Communications and Navigation Exploration, enabled.

Mr. Jeffrey Volosin

Acting Deputy Associate Administrator Space Communications and Navigation (SCaN) Office

Follow us at: https://www.nasa.gov/scan

Facebook: NASASCaN

Twitter: @NASASCaN

www.nasa.gov