

A Summary and Analysis of NASA's Strategic Astrophysics Technology PCOS/COR Investments since Program Inception

June 10, 2018

Azita Valinia, Thai Pham (presenting), and Opher Ganel

Astrophysics Flight Projects Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD USA, 20771 Azita.Valinia@nasa.gov; phone: +1 301-286-5039

The Strategic Astrophysics Technology (SAT) Program

 Technologies need to be matured when the need is first recognized, not when a project is already burning through its schedule and budget –

"...in the mid-1980s, NASA's budget office found that during the first 30 years of the civil space program, no project enjoyed less than a 40% cost overrun unless it was preceded by an investment in studies and technology of at least 5 to 10% of the actual project budget that eventually occurred." ¹

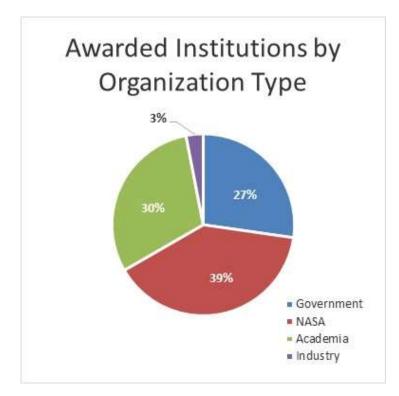
- Technology maturation involves technical, cost, and schedule risks better addressed in an R&D program; thus NASA Astrophysics Division (APD) started the SAT Program in 2009, divided into three Programs:
 - Physics of the Cosmos (PCOS) seeks to answer "How does our universe work?"
 - Cosmic Origins (TCOR) seeks to answer "How did we get here?"
 - Exoplanet Exploration Program (ExEP) seeks to answer "Are we alone?"

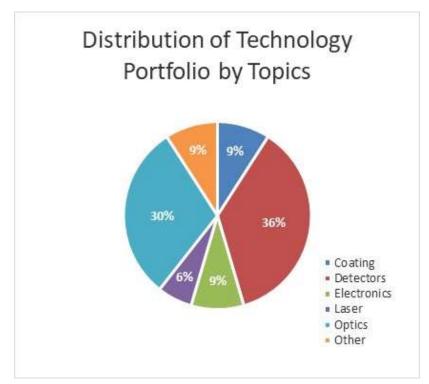
¹ John C. Mankins, "The critical role of advanced technology investments in preventing spaceflight program cost overrun", The Space Review, December 1, 2008. Available at www.thespacereview.com/article/1262/1

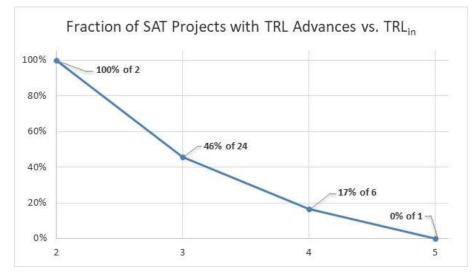
- PHYSICS The Strategic Astrophysics Technology (SAT) Program
- APD solicits SAT proposals through the ROSES AO, in three elements:
 - Technology development for Physics of the Cosmos (TPCOS)
 - Technology development for Cosmic Origins (TCOR)
 - Technology Development for Exoplanet Missions (TDEM)
- The proposals are reviewed, with the best ones selected for funding
- The role of the SAT Program is to increase technology readiness levels (TRL) of technologies that enable or enhance strategic astrophysics missions across the so-called "mid-TRL gap" of 3-6

- We only report here on PCOS and COR technology development, not those managed by the Exoplanet Exploration Program (ExEP) Office; whenever we discuss SATs we refer only to TPCOS and TCOR
- TPCOS SATs are managed by the PCOS Program Office (POs) and TCOR SATs are manages by the COR PO, with the two POs operated by the same staff
- In parallel, several tasks have also been directed to fill technology requirement gaps in alignment with the PCOS and COR science goals
- Technology task selection depends on prioritization of technology gaps, which has been done annually until 2017, and will henceforth be biennial
- Since 2009, 33% of TPCOS proposals and 23% of TCOR proposals have been selected, for a 27% total SAT selection rate

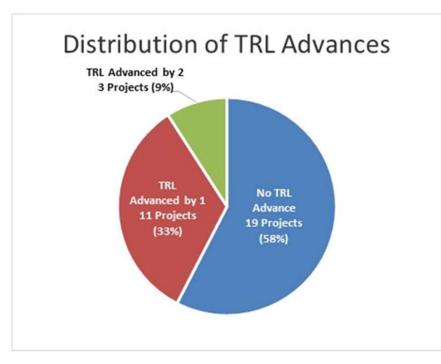
- Including three legacy tasks, PCOS and COR POs manage(d) 78 technology development tasks (47 PCOS and 31 COR)
- For the analysis reported here, we removed 14 of the 78 tasks, as follows:
 - Mission development rather than technology development (4 tasks)
 - Tasks started less than a year ago, not continuing a previous task (9 tasks, including 4 SATs)
 - Small, brief projects combines into a single task that the PO was asked to manage (1 task)
- This leaves 64 tasks (40 PCOS and 24 COR):
 - SATs: 46
 - Astrophysics Research and Analysis (APRA): 1
 - Direct funded: 17
- Maturing strategic technologies is challenging, not typically expected to be completed within the schedule and budget of a single SAT, but most PIs won continued funding (and/or received direct funding); where the technology objective is the same, we combined tasks for the purpose of analysis
- This leaves 33 projects (15 PCOS and 18 COR) to be analyzed, with the results shown in the following slides


- PCOS investment in their 15 projects was \$52.5M (\$3.5M average)
- COR investment in their 18 projects was \$29.8M (\$1.7M average)
- Average project duration was 3.6 years (4.3 years PCOS and 3.0 years COR)
- Note that many projects are still ongoing, these numbers may increase somewhat by the time they are completed


- 13 projects were awarded to NASA PIs (GSFC and MSFC)
- 10 projects were awarded to PIs at academic institutions
- 9 projects were awarded to PIs at government labs (Federally Funded Research and Development Centers, FFRDCs, such as JPL and NIST)
- I project was awarded to an industry PI


- 12 projects worked on detector technologies
- 10 projects worked on optics technologies
- 3 projects each worked on technologies relating to coatings and electronics
- 2 projects worked on laser technologies
- 3 projects worked on other technologies (e.g., sub-Kelvin cooling, etc.)

- While TRL advances are our goal, they are not the sole measure of success
- The greatest challenges to achieving TRL advances include:
 - Maturing technologies required for strategic missions is by definition very challenging
 - Many projects work on systems, where TRL is determined by the least-mature subsystem
 - POs impose rigorous standards, including establishment of credible path for achieving full onorbit performance requirements; if any requirement is not completed, TRL doesn't advance
 - Incoming TRL assessed by PI; may be optimistic so actual TRL advance may not be recognized
 - Sometimes requirements become a moving target (e.g., project initially works on 5" X-ray mirrors for IXO, superseded by 5" for Athena, superseded by <1" for Lynx)
 - Advancing TRL is more challenging when initial TRL is higher (see below)
 - Budget and schedule may be insufficient for larger challenges; requiring follow-on funding



While the statistical sample is small, especially for TRL_{in} of 2 and 5, the trend is clear and unsurprising – the higher a project's entry TRL, the more difficult it is to complete all requirements for advancing to the next TRL

- Overall, 14 of 33 technology development projects (42%) advanced by at least one TRL, of which 3 (9%) advanced by two; The high-risk, high-reward nature of this R&D portfolio makes the result especially impressive
- Counting double-TRL advances twice, the 17 TRL advances cost the Program an average of \$4.8M each (counting only \$38.5M cost of advancing projects drops the average to \$2.3M)

PCOS and COR Programs had remarkable technology development successes:

- TES micro-calorimeters expected to be major US contribution to Athena X-IFU
- Time-division SQUID multiplexing is backup to Athena X-IFU baseline readout
- FPGA-based fast X-ray event recognition may contribute to Athena WFI
- Phasemeter technology infused into GRACE-FO's LRI
- Antenna-coupled detectors deployed in BICEP2, BICEP3 and Keck Array, and flown on Spider LDB mission (2014/15)
- Optical blocking filters incorporated into REXIS instrument on OSIRIS-Rex
- Feedhorn-coupled TES-based detector architecture deployed in CLASS telescope
- Arcus MIDEX proposal based on CAT-grating selected for Phase A concept study
- TES bolometer detectors selected to support HAWC instrument on SOFIA
- Advanced CCD detectors implemented into FIREBall LDB mission, WaSP instrument at Palomar, and Caltech Optical Observatory's Zwiki Transient Facility
- Advanced UV-reflective coatings implemented on ICON and GOLD missions
- HIRMES selected as third-generation facility for SOFIA
- H4RG Near-IR detectors adopted by WFIRST project;
- Heterodyne detector was incorporated into STO balloon experiment
- 4.74-THz local oscillator flown on STO-2 balloon experiment

- Other benefits of the SAT Program include:
 - Over half of SAT PIs successfully leveraged their SAT projects to gain additional funding
 - Matching internal research and development funding
 - Co-funding
 - Fellowships
 - Funded parallel efforts on related projects (e.g. via APRA)
 - Several PIs set up collaborations with researchers at other institutions on proposals and new programs, and/or generated industry interest in their technologies
 - One PI inducted as fellow in the National Academy of Inventors (NAI)
- SAT Program helps train and shape the future astrophysics work force and impacts the wider technological work force in the US:
 - In 2017, on average two undergrads, two grad students, and one post-doc contributed to each SAT project; total to date is over 100 students and post-docs
 - Students received PhDs, were accepted into graduate programs, and/or accepted full-time positions at universities, government labs, or industry

- APD's SAT Program and direct-funded investments in maturing strategic development over the past 9 years has been a great success story
 - 42% of projects led to TRL advance of 1 or 2 levels
 - A wide range of projects, including many without a TRL advance, led to technology infusion into missions and projects
 - Over 100 students and post-docs participated in projects, helping train the future Astrophysics workforce and contributing to the wider US high-tech workforce
- Average project duration to date is 3.6 years
- Average project investment to date is \$2.5M (total \$82.3M)
- Technology topics invested in most are detectors and optics (67%), with the balance in coatings, electronics, lasers, etc.
- Project PIs distributed almost uniformly between NASA centers, academia, and government labs