

NASA Astrophysics Technology Gaps, Prioritization, and Development

18th Annual Mirror Technology Workshop; November 5, 2018

Opher Ganel, opher.ganel@nasa.gov, 410-440-8029
Thai Pham, thai.pham@nasa.gov, 301-286-4809

Physics of the Cosmos Program Cosmic Origins Program Or

PCOS and COR Programs Technology Interests

Physics of the Cosmos (PCOS)

- X-ray astrophysics: grazing-angle mirrors, optical blocking filters, fast event ID, gratings, microcalorimeters, radiation-tolerant detectors
- Gravitational-wave astrophysics: phase measurement system, micro-Newton thrusters, non-contact charge-management system, stable laser system, low-stray-light telescope
- Cosmic Microwave Background (CMB): superconducting FPAs and optical elements (cryo filters and coatings)

Cosmic Origins (COR)

- <u>UV/Optical/IR:</u> Next-gen detectors, ultra-stable high-precision telescope systems (including mirrors, thermal control, structures, metrology, etc.), and advanced UV coatings
- <u>Far-IR:</u> Heterodyne detectors, advanced cooling systems, ultra-sensitive detectors and large arrays

Exoplanet Exploration Program (ExEP)

 <u>Exoplanet direct imaging:</u> Coronagraph masks, deformable mirrors, starshades, ultra-stable optomechanical systems, ultra low-noise detectors

Focusing on Optics Technologies

Thin grazingincidence X-ray mirrors (intrinsic high precision, left; adjustable, right)

Ultra-stable, lowscattered-light telescope for gravwave observatory

Nano-fabbed, high-resolution X-ray grating

Large high-quality optical mirrors and coatings

Technology Gap Prioritization Objectives

Identify technology gaps applicable and relevant to Astrophysics strategic objectives as described (in order
of initial publication) in the Astronomy & Astrophysics Decadal Survey, the Astrophysics Implementation
Plan (AIP), and the Astrophysics Roadmap

2010 Decadal Survey

APD Implementation Plan (2012, 2014, 2016)

NASA APD 30 year vision (2013)

- Rank technology gaps to inform Astrophysics strategic technology development planning and investments (Strategic Astrophysics Technology, SAT; and directed funding)
- Inform SAT solicitation and other NASA technology development programs (APRA, SBIR, and other SMD, OCT, and STMD activities) of our technology gaps
- Results inform technology developers of Program needs to help focus technology development efforts and leverage existing technologies when possible, and avoid duplicating development efforts
- Process improves transparency and relevance of Astrophysics technology investments
- Process informs and engage the community to optimize Astrophysics technology development process
- Leverage technology investments of other organizations by defining Astrophysics strategic technology gaps and identifying NASA as a potential customer

Physics of the Cosmos Program Osmic Oreins Program

Strategic Technology Development Process

Program Annual Technology Reports (PCOS & COR) and Program Plan Appendix (ExEP) Contents Moved into ABTR and Websites

Was three reports annually

(with websites in support role)

Will be:

One report biennially starting 2019

(cover mockup shown)

Websites & Database playing major role

PCOS/COR technology

apd440.gsfc.nasa.gov/technology

AstroTech searchable database for PCOS. COR, and **ExEP**

www.astrostrategictech.us/

ExEP technology

exoplanets.nasa.gov/exep/technology

Prioritization and Coordination Among Astrophysics Program Offices

- Technology gap prioritization is changing from Program sciencecentric to Astrophysics-wide
- Technologists from PCOS/COR/ExEP work together:
 - Determine for each gap which Program would benefit most from closing it, after which
 it is prioritized by that Program (if more than one Program, split into unique gaps)
 - Technologists from the three POs jointly prioritize gaps for each of the Programs
 - After the three POs complete their prioritization, the technologists merge the three priority lists into a single prioritized Astrophysics technology gaps list
- We prioritize technology gaps according to community inputs based on a uniform set of criteria:
 - Strategic alignment with Program science goals
 - Benefits and impacts to Program objectives
 - Urgency
 - Scope of applicability across Astrophysics

Current PCOS Technology Gaps Prioritization

				3
	PCOS Technology Capability Gaps	Science	Tech	Funded
	Highly stable low-stray-light telescope	GW	Telescope	✓
	Low-mass, long-term-stability optical bench	GW	Optical	
	Precision Microthrusters	GW	Propulsion	✓
	High-power, narrow-line-width laser sources	GW	Laser	✓
	Phase measurement subsystem (PMS)	GW	Electronics	✓
1	Large-format, high-spectral-resolution, small-pixel X-ray focal plane	X ray	Detector	✓
	Fast, low-noise, megapixel X-ray imaging arrays with moderate spectral	X ray	Detector	✓
	High-efficiency X-ray grating arrays for high-resolution spectroscopy	X ray	Optics	✓
	High-resolution, large-area, lightweight X-ray optics	X ray	Optics	✓
	Non-deforming X-ray reflective coatings	X ray	Coating	
	Long-wavelength-blocking filters (free standing) for X-ray micro-	X ray	Optics	
	Non-contact charge control for Gravitational Reference Sensors (GRS)	GW	Electronics	✓
	Advanced millimeter-wave focal plane arrays for CMB polarimetry	IP	Detector	✓
2	Polarization-preserving millimeter-wave optical elements	IP	Optics	
	High-efficiency, low cost cooling systems for temperatures near 100 mK	IP, X ray	Cooler	✓
	Rapid readout electronics for X-ray detectors	X ray	Electronics	✓
	Optical-blocking filters (OBF)	X ray	Optics	✓
	Gravitational reference sensor (GRS)	GW	Detector	
3	Very-wide-field focusing instrument for time-domain X-ray astronomy	X ray	Optics	
3	Ultra-high-resolution focusing X-ray observatory telescope	X ray	Telescope	
	Advancement of X-ray polarimeter sensitivity using negative ion gas	X ray	Detector	
	Low-power, low-resolution continuous GSa/s direct RF digitizer	CR	Detector	
	Tileable, 2-D Proportional Counter Arrays	Gamma ray	Detector	
	High-performance gamma-ray telescope	Gamma ray	Telescope	
4	Lattice optical clock for Solar Time Delay mission and other applications	STD	Electronics	
4	Fast, few-photon UV detectors	UHECR	Detector	
	Lightweight, large-area reflective optics	UHECR	Optics	
	Low-power time-sampling readout	UHECR	Electronics	
	Low-power comparators and logic arrays	UHECR	Detector	

Current COR Technology Gaps Prioritization

	COR Technology Capability Gaps	Science	Tech	Funded
1	Heterodyne FIR detector arrays and related technologies	Far IR	Detector	✓
	Cryogenic readouts for large-format Far-IR detectors	Far IR	Electronics	
	Warm readout electronics for large-format Far-IR detectors	Far IR	Electronics	
	Large Cryogenic Optics for the Far IR	Far IR	Optics	✓
	Large-format, low-noise and ultralow noise far-infrared (FIR) direct detectors	Far IR	Detector	✓
	High-performance, sub-Kelvin coolers	Far IR, X-ray	Cooler	\checkmark
	Large-format, High-Dynamic-Range UV Detectors	UV, FUV	Detector	✓
	High Reflectivity Broadband FUV-to-NIR Mirror Coatings	UVOIR	Coating	✓
	Lightweight, large-aperture, high-performance telescope mirror systems for	Far IR	Optics	✓
	Compact, Integrated Spectrometers for 100 to 1000 µm	Far IR	Detector	
	Advanced Cryocoolers	Far IR, X-ray	Cooler	
	Mid-IR detectors	Mid IR	Detector	
2	Cryogenic deformable mirror	Mid IR	Optics	
	High-efficiency UV multi-object spectrometers	UV	Detector	✓
	Lightweight, large-aperture, high-performance telescope mirror systems for	UVOIR	Optics	✓
	High-performance spectral dispersion component/device	UVOIR, Far IR	Optics	
	Advanced Adaptive Optics	UVOIR,	Optics	√
	Band-shaping and dichroic filters for the UV/Vis	UV, VIS	Optics	
	Wide-bandwidth, high-spectral-dynamic-range receiving system	Cosmic Dawn	Detector	
	High-precision low-frequency radio spectrometers and interferometers	Cosmic Dawn	Detector	
	FIR interferometry	Far IR	Detector	
	Mid-IR coronagraph optics and architecture	Mid IR	Optics	
	UV/Opt/NIR Tunable Narrow-Band Filters	UVOIR	Optics	
3	Ultra-Stable Opto-Mechanical Systems Architecture	UVOIR,	Telescope	✓
	Segment Phasing and Control		Telescope	✓
	Dynamic Isolation Systems	UVOIR,	Telescope	✓
	Segmented-Aperture Coronagraph Architecture	UVOIR,	Optics	✓
	High-contrast Imaging Post-Processing	UVOIR,	Electronics	✓
	Mirror Segments Systems	UVOIR,	Optics	√

Current PCOS Strategic Technology Investment

Funding Program	Project Title	PI Name	PI Org	Tech Area	Signal Type
SAT2016	High-Speed, Low-Noise, Radiation-Tolerant CCD Image Sensors for Strategic High-Energy Astrophysics Missions	Bautz, Mark	MIT	Detector	X Ray
SAT2016	Superconducting Antenna-Coupled Detectors for CMB Polarimetry with the Inflation Probe	Bock, James	JPL	Detector	Sub-mm
SAT2017	Development of Adjustable X-ray Optics with 0.5 Arcsecond Resolution for the Lynx Mission Concept	Reid, Paul	SAO	Optics	X Ray
SAT2017	Microwave SQUID readout technology to enable Lynx and other future Great	Bennett, Douglas	NIST	Detector	X Ray
SAT2017	High Resolution and High Efficiency X-ray Transmission Grating Spectrometer	Schattenburg, Mark	MIT	Optics	X Ray
Directed2018	Advancing the Focal Plane TRL for LiteBIRD and Other Next Generation CMB Space Missions	Lee, Adrian	UCB	Detector	Sub-mm
Directed2018	Next Generation X-ray Optics	Zhang, William	GSFC	Optics	X Ray
Directed2018	Advanced X-ray Optics ISFM Sub-package #1: Differential Deposition for Figure Correction in X-ray Optics	Kilaru, Kiran	MSFC	Optics	X Ray
Directed2018	Advanced X-ray Optics ISFM Sub-package #2: Direct Fabrication of Full Shells	Bongiorno, Stephen	MSFC	Optics	X Ray
Directed2018	Advanced X-ray Optics ISFM Sub-package #3: Computer- Controlled Polishing of High-Quality Mandrels	Davis, Jacqueline	MSFC	Optics	X Ray
Directed2018	Advanced X-ray Optics ISFM Sub-package #4: Low Stress Mirror Coatings	Broadway, David	MSFC	Optics	X Ray
Directed2018	Advanced X-ray Optics ISFM Sub-package #5: X-ray Testing and Calibration	Ramsey, Brian	MSFC	Optics	X Ray
Directed2018	Advanced X-ray Optics ISFM Sub-package #6: Hybrid X-ray Optics by Additive Manufacturing	Broadway, David	MSFC	Optics	X Ray
Directed2018	Advanced X-ray Microcalorimeters ISFM Sub-package #1:TES Microcalorimeters	Kilbourne, Caroline	GSFC	Detector	X Ray
Directed2018	Advanced X-ray Microcalorimeters ISFM Sub-package #2: Lab Spectroscopy for Space Atomic Physics	Porter, Scott	GSFC	Detector	X Ray
Directed2018	Advanced X-ray Microcalorimeters ISFM Sub-package #3: Magnetically Coupled Calorimeters	Bandler, Simon	GSFC	Detector	X Ray
Directed2018	Providing Enabling and Enhancing Technologies for a Demonstration Model of the Athena X-IFU	Kilbourne, Caroline	GSFC	Detector	X Ray
Directed2018	US Contribution to the Athena Wide Field Imager	Burrows, David	PSU	Electronics	X Ray

Current COR Strategic Technology Investment

Funding Program	Project Title	PI Name	PI Org	Tech Area	Signal Type
SAT2014	Raising the Technology Readiness Level of 4.7-THz local oscillators	Hu, Qing	MIT	Detector	Far IR
SAT2014	Development of Large Area (100x100 mm) photon counting UV detectors	Vallerga, John	UCB	Detector	UV
SAT2014	Improving UV Coatings and Filters using Innovative Materials Deposited by ALD	Scowen, Paul	ASU	Optical Coating	UV
SAT2014	Advanced FUVUV/Visible Photon Counting and Ultralow Noise Detectors	Nikzad, Shouleh	JPL	Detector	UVOIR
SAT2015	High-Efficiency Continuous Cooling for Cryogenic Instruments and sub-Kelvin Detectors	Tuttle, James	GSFC	Cooling System	X Ray Far IR, Sub-mm
SAT2016	Ultrasensitive Bolometers for Far-IR Spectroscopy at the Background Limit	Bradford, Charles	JPL	Detector	Far IR
SAT2016	High Performance Sealed Tube Cross Strip Photon Counting Sensors for UV-Vis Astrophysics Instruments Development of Digital Micromirror Devices for Far-UV	Siegmund, Oswald	UCB	Detector	UV
SAT2016	Applications	Ninkov, Zoran	RIT	Optics	UV
SAT2016	Development of a Robust, Efficient Process to Produce Scalable, Superconducting kilopixel Far-IR Detector Arrays	Staguhn, Johannes	JHU	Detector	Far IR
SAT2017	Ultra-Stable Structures Development and Characterization Using Spatial Dynamic	Saif, Babak	GSFC	Metrology/ Structure	UVOIR
SAT2017	Scalable micro-shutter systems for UV, visible, and infrared spectroscopy	Greenhouse, Matthew	GSFC	Optics	UVOIR
SAT2017	Electron-beam Generated Plasma to Enhance Performance of Protected Aluminum	Quijada, Manuel	GSFC	Optical Coating	UVOIR
SAT2017	Development of High-Resolution Far-Infrared Array Receivers	Mehdi, Imran	JPL	Detector	Far IR
Directed2018	Predictive Thermal Control (PTC) Performance Tests	Stahl, H. Philip	MSFC	Optics	UVOIR
SMTP2018	System-Level Segmented Telescope Design (SLSTD)	Dewell, Larry	LM	Telescope	UVOIR
SMTP2018	Ultrastable Large Telescope Research & Analysis (ULTRA)	Knight, Scott	Ball	Telescope	UVOIR

Segmented Mirror Technology Program (SMTP) Phase I

- One-year program to mature integrated system architectures to enable next generation ≥ 10m segmented space telescopes with integrated coronagraphs (e.g., Large UV/Optical/IR Surveyor, LUVOIR; Habitable Exoplanet Observatory, HabEx; and Origins Space Telescope, OST)
- Two industry-based efforts funded, one led by Lockheed Martin and the other by Ball Aerospace
- Teams presented interim status to NASA in September 2018
- Final reports are expected in spring 2019

Segmented Mirror Technology Program (SMTP) Phase II

- Two-year technology program to advance key technologies identified by the large-mission-concept study teams; this development and maturation effort is intended to build on architectures and findings developed in Phase I for LUVOIR, HabEx, and OST, specifically:
 - Move individual technologies identified in Phase I to Technology Readiness Level (TRL) 4
 - Move toward system-level TRL 3
 - Through the above, mitigate risk, shorten fabrication time, and reduce overall mission costs
- Approximately \$8M total expected to be provided for 2-3 efforts
- RFP is currently being drafted, expected to be released in 2019 (exact timing TBD)

Astrophysics Technology Website and AstroTech Database

PCOS/COR technology development website

(https://apd440.gsfc.nasa.gov/Technology/Index.html)

- Description of tech development process
- Full details of gaps and their priority ranking
- Access to abstracts, annual PI status reports, one-page project summaries (quad charts), etc. of past and current strategic tech dev investments across PCOS, COR, and ExEP through searchable AstroTech database (http://www.AstroStrategicTech.us/)
- Benefits and success stories
- Archive of Program Office documents (including e.g. PATRs) and conference posters

Integrated Strategic Astrophysics Technology Solicitation

- Strategic Astrophysics Technology (SAT, element D8 of Research Opportunity in Earth and Space Sciences, ROSES) will continue its current annual solicitation cycle
- The SAT solicitation will no longer be split into three separate programs, Technology development for PCOS (TPCOS), Technology Development for COR (TCOR) and Technology Development for Exoplanet Missions (TDEM); instead, a single SAT solicitation will address a range of technology gaps across Astrophysics
- SAT mandatory NOIs due 1/24/2019; proposals due 3/21/2019
- We continue to solicit technology gaps ongoingly, with cutoff dates on the 1st of June every other year (next cutoff scheduled for 6/1/2019)

PCOS/COR/ExEP Program Offices technology development enables future Astrophysics missions

