

Brainstorming Session #1

Science & Missions

Cosmic Structure, X-rays, Gamma Rays,
Gravitational Waves,
Cosmic Microwave Background

Group Moderators

- Group #1 Cosmic Structure: Johannes Lange, Rebekah Hounsell, Tim Eifler
- Group #2 X-Ray: Rob Petre, Renee Ludlam
- Group #3 Gamma Ray: Liz Hays, Chris Karwin
- Group #4 GW: Ann Hornschemeier
- Group #5 CMB: Tom Essinger-Hileman, Brendan Crill

Group 1: Cosmic Structure

- What is the best mix of explorers / probes / flagships for PhysCOS science?
 - Idea: All sky spectroscopic survey (we will have imaging over the full sky by 2035)
 - Very deep and high resolution
 - Blue grism (less than 1 micron) and wide field of view (0.5 sqr deg), high resolution (R2000-3000), large mirror 6+ m (starship-ish if non-foldable)
 - Because of the numerous cosmological probes you really need a flagship which focuses on spectroscopy to capture all necessary information
 - Fundamental physics questions: cosmic acceleration, modified gravity, neutrino physics, and primordial Non-Gaussianity - better understanding of growth-geometry tests
 - Multi-probe cosmology+NG statistics (Higher-order statistics, field-level inference, kinematic lensing) without being systematics limited
 - Synergies with CMB (CMB secondaries, CMB Lensing)
 - Strong lensing time delays and substructure DM probe
 - Local group cosmology with stellar streams
 - All sky spectroscopic surveys also enables stellar physics studies , mapping spatial structure of IGM, etc
 - Could use explorers or probes for targeted studies i.e., strong lensing, SNe
- Which outstanding questions can be addressed with explorers? What requires a probe? What requires a flagship?
 - Rapid response missions to get SN light curves and spectra
 - Lots of ideas to measure the Hubble constant: eg. using solar-scale level interferometry: <https://arxiv.org/pdf/2210.07159>

Group 1: Cosmic Structure

- What can we do now to close science gaps for future missions?
 - Develop better understanding of systematics entering analysis - e.g. Weak Lensing is systematics limited
 - Develop infrastructure for new analysis methods that can best exploit future data - higher order statistics, field-level inference etc.
 - Develop frameworks for utilizing joint-survey data (Roman/Rubin) to address systematics (such as blending) for downstream cosmological tasks like weak lensing
 - Better simulations (DM only+hydro, including survey specific systematics and features) inference techniques
- Are there science gaps for a future flagship that require an explorer / MOO / balloon flight to address?
 - Calibration or systematic studies ?
 - SuperBIT like ideas (Superpressure Balloon above 99% of the atmosphere for space like imaging, especially in the blue 280-350nm)

Group 2: X-rays

- What is the best mix of explorers / probes / flagships for PhysCOS science?
 - There is a need for more frequent calls for probes
 - The Mid-Ex/SMEX mix is good
 - Need to reassess cost for making a probe (constrained fiscal environment)
 - Cost caps need to be reassessed for each mission class
 - Probes are 1B which is cost of old flagship
 - Can do a lot more science with less money these days
 - Flagships seem to be the only class with enough money for tech development
 - Biggest science breakthroughs come from flagships
 - Probes do compelling science and can be used develop technology needed for flagships
 - More international collaboration
 - Explorers are limited to $\frac{1}{3}$ total cost
 - Paths to tech development with international partners
 - MOOs are missing
 - Bring back!

Group 2: X-rays

- What are the set of science questions we would like to address?
 - COSMIC ECOSYSTEMS!!!
 - Galaxy formation
 - Population: high sensitivity and high angular resolution
 - feedback/growth
 - Environment
 - Imaging the Cosmic web - needs a flagship!!! (a lot of area)
 - populations/surveys: high sensitivity and high angular resolution
 - Large scale structures/galaxy evolution: low surface brightness, high resolution, high field of view, imaging
 - Transient phenomena: Rapid response
 - Direct detection of BH seeds: angular resolution and high sensitivity

Group 2: X-rays

- Which outstanding questions can be addressed with explorers? What requires a probe? What requires a flagship?
 - This really depends on the depth needed to address the science questions
 - Imaging the Cosmic web - needs a flagship!!! (a lot of area, low surface brightness, micro-cal)
 - Direct comparison to simulations

Group 2: X-rays

- What can we do now to close science gaps for future missions?
 - Support for Laboratory astrophysics! (e.g., atomic databases, transition lines)
 - Need tech demonstrations!
- Are there science gaps for a future flagship that require an explorer / MOO / balloon flight to address?
 - Probing the corona in Galactic XRBs
 - MOO: staring at a single source during an entire outburst, High timing resolution, long term data

Group 3: Gamma Rays

- What is the best mix of explorers / probes / flagships for PhysCOS science?
 - One Probe/small flagship to meet effective area needs, and many explorers and smaller missions.
 - Smaller missions can help to better identify and define science cases that motivate the bigger missions.
 - Explorers can be more easily motivated
 - We would benefit from smaller missions having a higher risk tolerance – faster time to science, but NASA would need to be onboard with this.
- Which outstanding questions can be addressed with explorers? What requires a probe? What requires a flagship?
 - Explorers:
 - Nucleosynthesis, e.g. Ni56 – energy and position resolution, higher angular resolution studies
 - Polarization measurements: e.g. blazars – are jets leptonic or hadronic. Polarization signal from GRBs. Needs large FoV and good polarization sensitivity, i.e. large and segmented
 - Pulsar timing array: Study BH mergers.
 - Probe/small flagship: generally will meet effective area needs
 - Galactic science example: GC excess and positron puzzle (requires good angular resolutions and flux sensitivity): Explorer (and smaller missions) leading to probe/small flagship?

Group 3: Gamma Rays

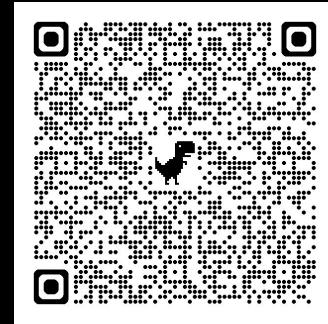
- What can we do now to close science gaps for future missions?
 - Explorers and smaller missions can help to better identify and define science cases to motivate future probes/flagships.
- Are there science gaps for a future flagship that require an explorer / MOO / balloon flight to address?
 - This ties into previous questions. For example, with a Pioneers we can begin to identify gamma-ray point sources in the Galactic center, but ultimately will require a larger mission (probe, flagship)
 - Balloon flights are critical to gamma-ray instrument development
 - Ultra-long duration balloon flights at high altitudes can be scientifically interesting.
- We need a SAG for gamma-ray probe/flagship

Group 4: Gravitational Waves

- **What is the best mix of explorers / probes / flagships for PhysCOS science?**
 - NB: We assume that the ESA-NASA flagship LISA launches in 2035, as planned
 - Next generation GW facilities would be Probe and/or Flagship-level investments (community groups such as a SAGs, should explore further):
 - Outside LISA band: noting a community group/SAG should develop further:
 - Higher frequency (deciHz), gives early warning for LIGO-like detectors, Probe and/or Flagship concepts (Note also: CLPS/Artemis and/or Seismometers for Moon) - focus on interferometry
 - Lower frequency (Micro-Hz) - higher mass BH mergers - 1AU scale, focus on gravitational reference system
 - MilliHz (LISA) follow-on: might not involve much tech development! Fly 2 LISAs?
 - For explorers, multi-messenger complimentarity to GW is very important, with lots of community support for TDAMM and Gamma ray capabilities. TDAMM and GammaSIG folks are doing this work.
- **Which outstanding questions can be addressed with explorers? What requires a probe? What requires a flagship?**
 - For space-based GW measurements, there is not as much that can be directly accomplished with Explorers, however for EM follow-up/complimentarity to GW, there are Explorer concepts.
 - Next-generation GW capabilities likely requires a Probe, and possibly a Flagship-level investment

Group 4: Gravitational Waves

- **What can we do now to close science gaps for future missions?**
 - There is already a LISA science gap list being maintained, just started in 2024


NASA LISA science gaps exist

(Nov 2024, informing LISA Preparatory Science call)

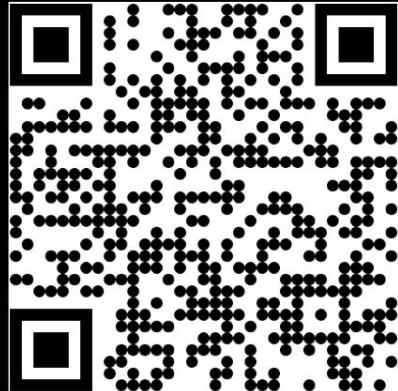
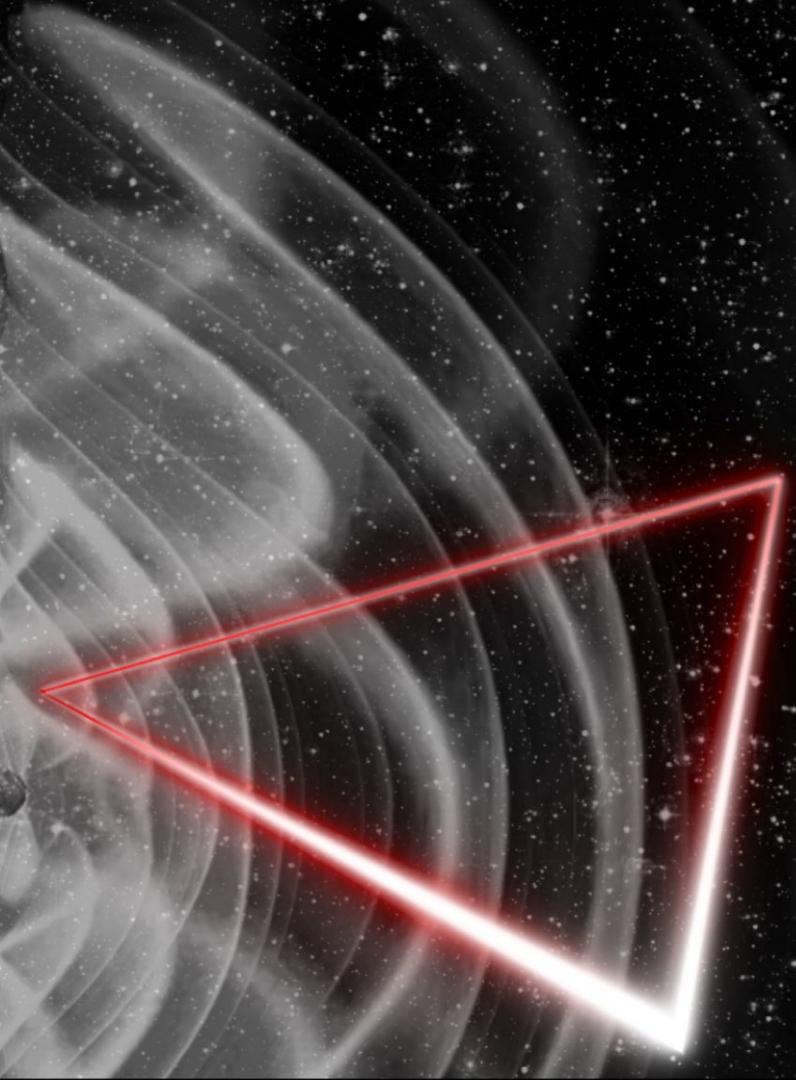
Galactic Binary Gaps & Massive Black Hole Binary Gaps

- *GB1: Modeling of LISA Galactic Binary Sources and Populations*
- *GB2: Modeling Additional Effects in Galactic Con Binary Systems*
- *MBHB1: Observational Constraints on Black Hole Seeding and Early Growth*
- *MBHB2: Connections Between Massive Black Hole Binary Mergers and Dual AGN*
- *MBHB3: Improved Methodology for Characterizing the Variability Signatures of MBHBs*
- *MBHB4: Realistic Predictions of Electromagnetic Counterparts to Extragalactic LISA Sources*
- *MBHB5: Multimessenger Interdisciplinary Investigations for Gas-driven Gravitational Wave Sources*

Extreme Mass Ratio Inspiral Gaps

- *EMRI1: Rapid Waveform Models for EMRI systems*
- *EMRI2: Detection Algorithms and Parameter Estimation for EMRI Systems*

Data Analysis and Waveform Gaps



- *DA1: Tests of Strong Gravity, Numerical Relativity and Waveform Modeling*
- *DA2: Interpreting and Utilizing Global Fit Outputs*
- *DA3: Mitigating Data Gaps and Disturbances*

Group 4: Gravitational Waves

- **What can we do now to close science gaps for future missions?**
 - There is already a LISA science gap list being maintained, just started in 2024
 - **Continue funding and INCREASE funding for LISA Preparatory Science:**
 - Additional science gaps mentioned include :
 - characterizing the “error volume” of LISA (misleading impostor counterparts), developing schemes for making predictions and determine how to communicate the information quickly to observers
 - developing joint GW- γ -ray forward models that connect GW-inferred geometry to expected polarization signatures in compact objects
 - Modeling/studying number and nature of compact object binaries in the galaxy, particularly with pulsars, and how many can be jointly detected in gamma-rays.
 - **Allocate time with Roman to characterize both LISA sources and the LISA error volume.**
 - Roman is the best current planned capability with its wide field of view, excellent sensitivity and angular resolution. Suggest mission-level agreements (start now!) that would allow the use of some Roman time for characterizing LISA sources. (Roman-LISA SAG?)

Group 4: Gravitational Waves

- **Are there science gaps for a future flagship that require an explorer / MOO / balloon flight to address?**
 - Wrt Explorers, see responses to other questions on multi-messenger complimentarity
 - Next generation GW may also take advantage of other parts of the NASA program: CLPS and Artemis, for example, for Moon-based projects

WANT TO
KNOW MORE?

**ATTEND THE LISA SYMPOSIUM:
JUNE 21–26, 2026
COLLEGE PARK, MD**

Group 5: Cosmic Microwave Background

- What is the best mix of explorers / probes / flagships for PhysCOS science?
- Which outstanding questions can be addressed with explorers? What requires a probe? What requires a flagship?
 - Probes are probably right-sized to accomplish inflationary science and spectral distortion science (separately). A small flagship could accommodate both.
 - LiteBird (JAXA mission) is larger than a midex - sigma r is $\sim 1e-3$ (tau to cosmic variance). Provides a possible opportunity for NASA involvement in precursor to Probe.
 - PICO study showed a probe-class can get to $r \sim 1e-4$ along with much more science with larger aperture.
 - Spectral distortions (y and μ) can be best done from space. μ distortion hard with Explorer (e.g., PIXIE). ESA Voyage 2050 prioritized spectral distortions. US community has consistently prioritized imager (e.g., PICO) first.
 - Complementarity between ground, balloon, and space missions. CMB-S4 was cancelled, but SO/SPO making progress from the ground (frequencies below 300 GHz). Taurus (balloon) and CLASS (ground) working toward large-scale E-modes for optical depth (tau), but true CV only from space.
 - Space gives full-sky coverage, full frequency coverage, greater sensitivity per detector, stability. COBE, WMAP, Planck show legacy value of full-sky maps.

Group 5: Cosmic Microwave Background

- What can we do now to close science gaps for future missions?
 - Better simulations of foreground removal and delensing, which set fundamental limits on r recovery. How complex are the Galactic foregrounds.
 - Revisit mission architecture choices in light of technology developments (cryo, detector), launch vehicles.
 - Delensing - what aperture do you need to do this to get $r=1e-4$?
 - Time-domain science is an emerging area that needs further study.
 - Forecasting of space versus ground across full range of CMB science: lensing, kSZ, clusters
 - Cosmology theory continues to evolve and needs support: inflation, reionization, galaxy evolution.
- Are there science gaps for a future flagship that require an explorer / MOO / balloon flight to address?
 - Participation in LiteBIRD could provide better knowledge of foregrounds and performance of bolometer arrays in space.
 - Balloons and ground continue to provide important precursor science.
 - And continue to develop a thriving community of scientists and technologists