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Abstract

We present a theoretical analysis of the energy exchange between a relativistic poly-

tropic fluid and an isotropic Wyman IIa fluid within a compact stellar object using the

framework of gravitational decoupling by extended minimal geometric deformation

(MGDe). By applying a mimic constraint for the energy density, we derive an effec-

tive anisotropic configuration that satisfies the main physical acceptability conditions

for realistic stellar models. Our results show that the polytropic component transfers

energy to the Wyman IIa fluid, predominantly in the outer layers of the star, while the

core remains stable without energy exchange. The model confirms that physically

viable configurations arise when the strong energy condition is preserved, offering

insights into the internal dynamics and stability of relativistic multi-fluid systems.

1. Introduction

The Theory of General Relativity (TRG) [1, 2] provides the funda-
mental framework to describe the structure and dynamics of compact
stellar objects such as neutron stars and black holes. Einstein’s Field
Equations (EFE)

Gµν = Rµν −
1

2
Rgµν = κTµν, (1)

link the geometry of spacetime, represented by the Einstein tensor Gµν,
with the matter-energy distribution described by the energy–momentum
tensor Tµν.
The interior of a compact stellar object is modeled by:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2, (2)

where dΩ2 = dθ2 + sin2 θ dϕ2 represents the angular part of the metric.
The corresponding effective matter sector is obtained from Einstein’s
Field Equations and takes the form:

κρ =
1

r2
− e−λ

(
1

r2
− λ′

r

)
, (3)

κpr =
1

r2
− e−λ

(
1

r2
+
ν ′

r

)
, (4)

κpt = −e−λ

4

(
2ν ′′ + ν ′2 − λ′ν ′ + 2

ν ′ − λ′

r

)
, (5)

where ρ denotes the energy density, pr the radial pressure, and pt the
tangential pressure inside the compact star.

2. Gravitational Decoupling and MGDe Framework

The Gravitational Decoupling (GD) via the Extended Minimal Geo-
metric Deformation (MGDe) [5, 6, 7, 8] is based on the idea that the
spacetime of a known seed source T

(s)
µν ,

ds2 = eξ(r)dt2 − eµ(r)dr2 − r2dΩ2, (6)

is influenced by an additional source Θµν through metric deformations
such that

ξ → ν = ξ + g(r), (7)
e−µ → e−λ = e−µ + f (r), (8)

where f (r) and g(r) are the geometric deformation functions, de-
pending only on r to preserve spherical symmetry.
Substituting Eqs. (7)–(8) into Eqs. (3)–(5) leads to two distinct sets of
differential equations:

(i) For the seed source T
(s)
µν :

κT
0(s)
0 =
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)
, (9)
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κT
2(s)
2 =

e−µ

4

(
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)
. (11)

(ii) For the additional source Θµν:

κΘ0
0 = − f
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− f ′

r
, (12)
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, (14)

where the auxiliary functions J1 and J2 are given by

J1 = e−µg
′

r
, (15)

4J2 = e−µ

(
2g′′ + g′2 + 2

g′

r
+ 2ξ′g′ − µ′g′

)
. (16)

3. Wyman IIa Isotropic Fluid and Polytrope

Wyman IIa Isotropic Fluid
We consider as the seed source the Wyman IIa isotropic fluid [9],
which its metric components are given by:

eξ(r) = (A−Br2)2, (17)
e−µ(r) = 1 + Cr2(A− 3Br2)−2/3, (18)

where A is a dimensionless constant, while B and C have dimensions
of inverse length squared.

Polytrope
Characterized by the equation of state [3]:

pr = K ρ
1+ 1

n
Θ , (19)

where K is the polytropic constant, n the polytropic index, and ρΘ the
energy density of the additional source.

The conditions for this case are: B = 0.45, κ = 8π, R = 1, along with

A = c2

(
c3BR2 − c4

√
R− 2M√
R

)
, (20)

c = −
2M

(
A− 3BR2

)2/3
R3

(
K

1
n+1 + 1

) . (21)

We use n = 0.5 to model neutron stars, and in the illustrations we ob-
serve that K = 0.43 corresponds to the blue line, K = 0.44 to the black
line, and K = 0.47 to the red line.

4. Physical Acceptability Conditions [4] with Results

1. Regular Spacetime: The metric potentials of the interior solution
must be positive, finite, and free of singularities throughout the star.
At the center (r = 0) they satisfy:

e−λ(0) = 1, eν(0) = constant.

Moreover, e−λ(r) is a monotonically decreasing function, while eν(r)

increases monotonically.
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Figure 1: Temporal metric for differ-
ent values of K
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Figure 2: Radial metric for different
values of K

2. Matching Conditions:

eν(R) = e−λ(R) = 1− 2M

R
, (22)

where M is the total mass and R the radius of the star. The radial
pressure also vanishes at the surface:

pr(R) = 0, (23)

since the exterior region is vacuum.

3. Causality Condition:

0 ≤ v2r =
dpr
dρ

< 1, 0 ≤ v2t =
dpt
dρ

< 1. (24)
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Figure 3: Temporal velocity for dif-
ferent values of K
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Figure 4: Radial velocity for differ-
ent values of K

4. Matter Sector: The quantities ρ, pr, and pt must be positive, contin-
uous, and monotonically decreasing functions of r.
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Figure 5: Radial pressure for differ-
ent values of K
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Figure 6: Tangential pressure for
different values of K
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Figure 8: Density for different values of K

5. Energy Conditions:

Dominant Energy Condition (DEC): ρ ≥ pr, ρ ≥ pt, (25)
Strong Energy Condition (SEC): ρ ≥ pr + 2pt. (26)

Satisfaction of the SEC is desirable for ensuring equilibrium stability.
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Figure 9: Dominant Energy Condi-
tion for different values of K
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Figure 10: Dominant Energy Con-
dition for different values of K
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Figure 12: Strong Energy Condition for different values of K

6. Gravitational Redshift:

Z(r) =
1√
eν(r)

− 1, (27)

must be continuous, positive, and decrease with radius. Its surface
value must obey the upper bound Z(R) < 5.211, and if the model
satisfies the SEC, the limit becomes more restrictiveZ(R) < 3.842.
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Figure 14: Gravitational Redshift for different values of K

5. Energy Exchange Between Relativistic Fluids

The results indicate that ∆E > 0, with the energy exchange increasing
in the outer regions of the compact star. This suggests that the poly-
trope transfers energy to the environment to coexist with the perfect
fluid.
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Figure 15: ∆E density plot for K =
0.43
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Figure 16: ∆E density plot for K =
0.44
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Figure 18: ∆E density plot for K = 0.47
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