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‘ Abstract |

We present a theoretical analysis of the energy exchange between a relativistic poly-
tropic fluid and an isotropic Wyman lla fluid within a compact stellar object using the
framework of gravitational decoupling by extended minimal geometric deformation
(MGDe). By applying a mimic constraint for the energy density, we derive an effec-
five anisotropic configuration that satisfies the main physical acceptability conditions
for realistic stellar models. Our results show that the polytropic component transfers
energy to the Wyman lla fluid, predominantly in the outer layers of the star, while the
core remains stable without energy exchange. The model confirms that physically
viable configurations arise when the strong energy condition is preserved, offering

insights into the internal dynamics and stability of relativistic multi-fluid systems.

‘ 1. Introduction |

The Theory of General Relativity (TRG) [1, 2] provides the funda-
mental framework to describe the structure and dynamics of compact
stellar objects such as neutron stars and black holes. Einstein’s Field
Equations (EFE)
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link the geometry of spacetime, represented by the Einstein tensor G,
with the matter-energy distribution described by the energy—momentum
tensor 1.

The interior of a compact stellar object is modeled by:

ds® = "2 — A dr? — 2402, (2)

where dQ? = d6? + sin” 0 d¢? represents the angular part of the metric.
The corresponding effective matter sector is obtained from Einstein’s
Field Equations and takes the form:
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where p denotes the energy density, p,. the radial pressure, and p; the
tangential pressure inside the compact star.

2. Gravitational Decoupling and MGDe Framework |

The Gravitational Decoupling (GD) via the Extended Minimal Geo-
metric Deformation (MGDe) [5, 6, 7, 8] is based on the idea that the

spacetime of a known seed source 7.3,

ds® = N dt? — MM dr? — r2d02, (6)

Is influenced by an additional source ©,, through metric deformations
such that

E—v=E+4g(r), (7)
e s e t=eF 4+ fr), (8)

where f(r) and g(r) are the geometric deformation functions, de-
pending only on r to preserve spherical symmetry.

Substituting Egs. (7)—(8) into Eqgs. (3)—(5) leads to two distinct sets of
differential equations:

(i) For the seed source Tfy):

O(s 1 1 :u,
&To()_ﬁ_eﬂ(ﬁ—7>y (9)
s L (1. ¢
/iTll():—ﬁ‘Fe M(ﬁ—l—?), (10)
— U r 7
KT22<S):€4 (25”+£’2 we 428 r“). (11)

o
li@o = _ﬁ — ?, (12)
1 /
m@i_lef(—2+i), (13)
r T
/{@%—ngi(Zu”JrV’QJrQi) i (V+ ), (14)
4 r 4 r
where the auxiliary functions J; and J, are given by
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‘ 3. Wyman lla Isotropic Fluid and Polytrope |

Wyman lla Isotropic Fluid

We consider as the seed source the Wyman lla isotropic fluid [9],
which its metric components are given by:

et = (A — Br?)?, (17)
e ") =14+ Cr?(A — 3Br?)~2/3, (18)
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where A is a dimensionless constant, while B and ' have dimensions
of inverse length squared.

Polytrope

Characterized by the equation of state [3]:
— K py, (19)

where K is the polytropic constant, n the polytropic index, and pg the
energy density of the additional source.

The conditions for this case are: B = 0.45, k = 8w, R = 1, along with
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We use n = 0.5 to model neutron stars, and in the illustrations we ob-
serve that K = 0.43 corresponds to the blue line, K = 0.44 to the black
line, and K = 0.47 to the red line.

‘ 4. Physical Acceptability Conditions [4] with Results |

1. Regular Spacetime: The metric potentials of the interior solution
must be positive, finite, and free of singularities throughout the star.
At the center (r = 0) they satisfy:

e M0 =1 ¢ = constant.

Moreover, e ") is a monotonically decreasing function, while ")
increases monotonically.
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Figure 1: Temporal metric for differ-  Figure 2: Radial metric for different

ent values of K values of K
2. Matching Conditions:
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where M is the total mass and R the radius of the star. The radial
pressure also vanishes at the surface:

pT<R> =0, (23)

since the exterior region is vacuum.
3. Causality Condition:

dpr
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dp dp

5 ] 065 :

0.50; ’ 0.60; ]
0.45 § 0.55
~_ 0.40° -, 050
= ‘ ] = s

0.35 ; 045} |

E ; 0.40 :

030; E 0.35 -

0.25 ] 03 —™™ ]

00 02 04 06 08 1.0 00 02 04 06 08 1.0

r/R r/R

Figure 3: Temporal velocity for dif-  Figure 4: Radial velocity for differ-
ferent values of K ent values of K

4. Matter Sector: The quantities p, p,, and p; must be positive, contin-
uous, and monotonically decreasing functlons of r.
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Figure 8: Density for different values of K

5. Energy Conditions:

Dominant Energy Condition (DEC): p >p., p > ps, (25)
Strong Energy Condition (SEC): p > p. + 2p;. (26)

Satisfaction of the SEC is desirable for ensuring equilibrium stability.
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Figure 9: Dominant Energy Condi- Figure 10: Dominant Energy Con-
tion for different values of K dition for different values of K
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Figure 12: Strong Energy Condition for different values of K

6. Gravitational Redshift:

1

eV(T)

Z(r) =

must be continuous, positive, and decrease with radius. Its surface
value must obey the upper bound Z(R) < 5.211, and if the model
satisfies the SEC, the I|m|t becomes more restrictiveZ(R) < 3.842.
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Figure 14: Gravitational Redshift for different values of K

‘ 5. Energy Exchange Between Relativistic Fluids |

The results indicate that AE > 0, with the energy exchange increasing
in the outer regions of the compact star. This suggests that the poly-
trope transfers energy to the environment to coexist with the perfect
fluid.
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Figure 18: AE density plot for K = 0.47
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