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ABSTRACT

Neutron star (NS) mergers, including both binary NS mergers and black hole-NS mergers, are multimessenger sources detectable in both gravitational waves (GWs) and electromagnetic (EM) radiation. The
expected EM emission signatures depend on the source's progenitor, merger remnant, and observer's line of sight (LoS). Widely discussed EM counterparts of NS mergers have been focused in the gamma-
ray (in terms of short-duration gamma-ray bursts) and optical (in terms of kilonova) bands. In this paper, we show that X-ray emission carries unique post-merger signatures that are inaccessible in other EM
bands and plays an important role in understanding the physics and geometry of NS mergers. We consider several progenitor and central engine models and investigate X-ray emission signatures from the
prompt phase immediately after merger to the afterglow phase extending years later. For the prompt phase, we devise a general method for computing phenomenological X-ray light curves and spectra for
structured jets viewed from any LoS, which can be applied to prompt X-ray observations of NS mergers to constrain the geometry. The geometric constraints can in turn be used to model the afterglow and
estimate a peak time and flux—to preemptively determine afterglow characteristics would be monumental for follow-up observation campaigns of future GW sources. Finally, we provide constraints on the
optimal time window for X-ray counterpart searches of NS mergers across a range of luminosity distances and detector sensitivities.
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> BNS-I model ruled out. BNS-Il uncertain due to lack of early X-ray coverage. BNS-IlII/-IV sufficient.
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