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Cosmic rays and us

Voyagers

Pioneers

https://www.nasa.gov/mission_pages/voyager/multi
media/heliosphere-bubbles.html




Questions

What does the magnetic field structure in

the (inner) solar system really look like,
and why?

How do cosmic rays propagate through
the (inner) solar system?

(Maps onto two Scientific Goals from the 2013 Decadal Survey in Solar and Space Physics)




Sun as a detector of (Galactic) cosmic rays

Beam

charged particles

NASA/ESA




Leptonic Cosmic Rays: Inverse Compton (1C)

Moskalenko, Porter, Diegel 2006
Orlando, Strong 2008 Photon density field
of a star

Orlando, Strong 2008

* Photons only
« Extended
* 1 GeV-range peak comes from: E ~Y?Eg ghoton




Hadronic Cosmic Rays
Seckel, Stanev, Gaisser (SSG) 1991

Solar Magnetic Field

High energy cosmic rays

Blocked

Gamma-ray energy
~1/10% of primary

For neutrinos, see Gerri
Roellinghoft’s IceCube f Low energy cosmic rays
WINZOZl tbiS week: ~ GeV
https://indico.fnal.gov/

2/

Picture by Kenny Ng




What are the observations telling us?

What new questions do the observations raise?




Peeling the first onion layer: IC

First 18 months of Fermi mission, Cycle 23/24 solar minimum

Inner
heliosphere
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Abdo+ 1104.2093 Fermi-LAT collaboration




Peeling the first onion layer: 1C

First 18 months of Fermi mission, Cycle 23/24 solar minimum

Inner
" —s— |C emission < 20 deg
hellosphere —— IC emission < 5 deg
Model 1
Force field Model 2

modulation ——— Model 3
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Peeling the first onion layer: IC

Inner
heliosphere

E <1 GeV prefer LARGE
modulation

E > 1GeV prefer NO
modulation

Stay tuned.
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11 years of Fermi-LAT data

Solar Disk Flux
No Fermi-LAT Flares
One ICS Bin

Energy (GeV)

Linden+ 2012.04654




The center: hadronic observations

Solar disk high-energy y —ray flux with Fermi-LAT and HAWC

Cycle 24 minimum \mf\m
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2014-2017 HAWC
analysis.

We are getting
prepped for the
Cycle 25 minimum
analysis.

A

Original disk
prediction by Seckel,
Stanev & Gaisser
(SSG1991)
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Modified from Nisa+ 1903.06349
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<2010 (17 months) = 2010 (94 months)

By
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The center: hadronic predictions

* No magnetic fields.

* No photospheric fields but include the
corona.

* Include the photospheric fields but not the
corona above 1000 km.




No magnetic tields

B = 0, CRs isotropic
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With no magnetic fields

Zhu et al., in prep.
Fermi data points from Linden+ 2012.04654




w/corona but no photosphere

PFSS model during
solar min and solar

Becker Tjus+ 1903.12638




w/corona but no photosphere
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See Mehr's talk for this!

<4 Fermi2011
Tang2018 (solar min.)
Tang2018 (9yr avg.)

—— NoField
—— Quiet 2008 solar min

—— Active 2014 solar max
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w/photosphere B but no corona

Propagation and interaction in chromo/photosphere

Magnetic mirroring
primary

trajectory ‘
— | ,\ 770-km flux-tube canopy

2 canopy
(B=6.5G)

'l photosphere
~ 3000 km (B = 1500 G)

Figure 1: Model of magnetic fields near the photosphere. Shading increases with
magnetic field intensity.

Seckel, Stanev, 1992
Backsplash
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Zhu et al., in prep.




Hints with corona + photosphere together
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Summary of weird stutt we can’t explain

(because no predictions fully work)

Why IC prefers different force-tield
modulation at different energies.

"Dip” in gammas at ~40 GeV (hadrons).

The overall hardness of the energy spectrum

but for the dip.

Time variability of the energy spectrum.

Spatial morphology of gamma-ray emission.
Differences in last two solar minima?




Going forward

Probably B fields at all
scales (inner heliosphere,
corona, solar atmosphere,
photosphere) matter to
more-or-less similar
degrees to explain the
observed properties.

New collab with
solar/space physicists
(Cohen, Sokolov) + our
OSU-based team.

4. Empirical model for
1AU GCR spectrum and
seed population

5-6 M-FLAMPA

From Ofer Cohen




Cosmic ray shadow

Protons 0.3-100 TeV
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<—East West—>
GSE longitude (deg.) 6.0 -5.0 -4.0 -3.0 20 1.0 0

Tibet Air Shower array
1306.3009

More w/HAWC and Tibet coming soon.




