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OVERVIEW

➤Why study the Sun above 100 GeV 
➤Observational Challenges 
➤Status, recent results and implications 
➤Synergies with neutrino astronomy 
➤Future Prospects
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Solar Disk at GeV: Brighter than expected!
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Solar Disk at GeV: Brighter than expected!
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• Solar Minimum flux is 
much harder and 
brighter!

• Unforeseen 
measurement in a 
physically interesting 
range. Mechanism?

• TeV prospects?

Observation

Theory
Max. theoretical 
emission 
assuming 100% 
efficiency



BEYOND 100 GEV WITH FERMI 
Last two solar minima

Linden et al. 2012.04654
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BEYOND 100 GEV WITH FERMI 
Last two solar minima

Cycle 24
8 Photons

Linden et al. 2012.04654
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BEYOND 100 GEV WITH FERMI 
Last two solar minima

Cycle 24
8 Photons

Cycle 25

1 Photon

Linden et al. 2012.04654
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THE GEV—TEV SUN FOR PHYSICS BEYOND THE 
STANDARD MODEL  

➤ Astrophysical anomalies >> Is it dark matter? 😱 
➤ The VHE Sun is an excellent target for indirect DM searches



TeV Observatories

ANTARES LHAASO

IceCube

Fermi
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TeV Observatories

ANTARES LHAASO

IceCube

Fermi

IACTs: Pointed 
Observations 

 

Can’t Observe 
the Sun :(
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TeV Observatories

ANTARES LHAASO

IceCube

Fermi

Wide-Angle Surveys: 

Surface/Volume Arrays 
Continuous monitoring, 
wide FOV 
100s of GeV to > 100 
TeV

𝛾
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THE SOLAR COSMIC RAY SHADOW
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THE COSMIC-RAY SHADOW OF THE SUN
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WHAT WE DO IN THE SHADOWS



First Results from HAWC
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 Cosmic-ray interactions with the Sun’s 
atmosphere produce 𝛄 rays and neutrinos

Proton

𝛄

𝝼

Sun
Earth

Cosmic rays
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 Cosmic-ray interactions with the Sun’s 
atmosphere produce 𝛄 rays and neutrinos

Proton

𝛄

𝝼

Sun
Earth

Cosmic rays

➤ Magnetic field of the Sun 
reverses the path of 
cosmic rays from ingoing 
to outgoing.

➤ Hadronic interactions
➤ Solar atmospheric 

neutrinos



COMPLEMENTARITY WITH NEUTRINOS
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Gerrit Roellinghoff, Carsten Rott 



14

Sun in the DM halo

Sun

Image: Aaron Vincent, Durham University
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Sun in the DM halo

WIMPs

Sun

Image: Aaron Vincent, Durham University
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Sun in the DM halo

WIMPs

Scattering

Sun

Image: Aaron Vincent, Durham University
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Sun in the DM halo

WIMPs

Scattering

Capture
Sun

Image: Aaron Vincent, Durham University
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Sun in the DM halo

WIMPs

Scattering

Capture
Sun

Annihilation
Image: Aaron Vincent, Durham University
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Sun in the DM halo

WIMPs

Scattering

Capture
Sun

Annihilation
Image: Aaron Vincent, Durham University



Annihilation via Long-lived Mediator
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• Mediator could have sufficiently long lifetime to so that it decays 
outside the Sun and produces a detectable gamma-ray flux.

🌎



DARK MATTER-PROTON 
SCATTERING LIMITS
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WHAT’S NEXT: SOLAR MINIMUM RESULTS FROM HAWC
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HAWC 3 YR

Sol Min.

Fermi Observations



Variation of the Sun shadow with Solar cycle

2015

~5 TeV

2016 2017

2018 2019
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FUTURE GAMMA-RAY 
OBSERVATIONS OF THE SUN
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FUTURE GAMMA-RAY 
OBSERVATIONS OF THE SUN
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TAKEAWAYS
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➤ There is a significant flux of likely hadronic gamma 
rays from the Sun upto at least 100 GeV. 

➤ In tension with theoretical predictions: modulation, 
spectral hardness. 

➤ Long-term monitoring of the Sun extending into the 
TeV energies along with efforts at the modeling front 
will hold the key in future. 

➤ Six years of HAWC results contemporaneous with 
Fermi observations coming soon. 

➤ Solar Physics 🤝 BSM Searches 🤝 Multi-messenger 
astronomy



BACK UP
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LOOKING FOR TEV GAMMA RAYS

➤ Ground-based gamma ray astronomy. 

➤ Sample air showers by observing Cherenkov radiation
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COMPLEMENTARITY WITH NEUTRINOS

Niblaeus et al. 1903.11363



DM CONSTRAINTS FROM THE VHE SUN
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Bell et al. 2103.16794


