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OVERVIEW

»Why study the Sun above 100 GeV
»(Observational Challenges

»Status, recent results and implications
»Synergies with neutrino astronomy

»Future Prospects



Solar Disk at GeV: Brighter than expected!
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Solar Disk at GeV: Brighter than expected!
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Solar Disk at GeV: Brighter than expected!
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Solar Disk at GeV: Brighter than expected!
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Solar Disk at GeV: Brighter than expected!
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Solar Disk at GeV: Brighter than expected!
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BEYOND 100 GEV WITH FERMI

Last two solar minima
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BEYOND 100 GEV WITH FERMI

Last two solar minima
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BEYOND 100 GEV WITH FERMI

Last two solar minima
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THE GEV—TEV SUN FOR PHYSICS BEYOND THE
STANDARD MODEL

> Astrophysical anomalies > > Is it dark matter? @

» The VHE Sun is an excellent target for indirect DM searches



TeV Observatories

TeV Gamma-Ray Telescopes
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TeV Observatories

Fermi

TeV Gamma-Ray Telescopes
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TeV Observatories

Fermi

TeV Gamma-Ray Telescopes
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TeV Observatories

Fermi
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p Systematic: in HAWC detector, the Sun blocks Galactic
cosmic rays and produces a deep “shadow’ in the sky map.

p Fit & subtract the shadow, then look for y ray excesses.

Sun shadow Shadow residual Injected y excess
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First Results from HAWC
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First Results from HAWC
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Cosmic-ray interactions with the Sun’s
atmosphere produce y rays and neutrinos

Cosmic rays

§‘\Earth

Sun




Cosmic-ray interactions with the Sun’s
atmosphere produce y rays and neutrinos

Cosmic rays

Sun )

> Magnetic field of the Sun
reverses the path of
cosmic rays from ingoing
to outgoing.

» Hadronic interactions «

» Solar atmospheric
neutrinos
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COMPLEMENTARITY WITH NEUTRINOS
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Sun in the DM halo
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Sun in the DM halo
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Annihilation via Long-lived Mediator

« Mediator could have sufficiently long lifetime to so that it decays
outside the Sun and produces a detectable gamma-ray flux.
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DARK MATTER-PROTON
SCATTERING LIMITS
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WHAT’S NEXT: SOLAR MINIMUM RESULTS FROM HAWC
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Variation of the Sun shadow with Solar cycle
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FUTURE GAMMA-RAY

OBSERVATIONS OF THE SUN
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OBSERVATIONS OF THE SUN

THE FERMI BUBBLES
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TAKEAWAYS

........................................................................................................

» There is a significant flux of likely hadronic gamma
rays from the Sun upto at least 100 GeV.

> In tension with theoretical predictions: modulation,
spectral hardness.

» Long-term monitoring of the Sun extending into the
TeV energies along with efforts at the modeling front
will hold the key in future.

» Six years of HAWC results contemporaneous with
Fermi observations coming soon.

> Solar Physics ¥ BSM Searches % Multi-messenger
astronomy
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LOOKING FOR TEV GAMMA RAYS

em cascade hadronic cascade

primary
hucleus

Y efe Yy e €

» Ground-based gamma ray astronomy. T

> Sample air showers by observing Cherenkov radiation
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COMPLEMENTARITY WITH NEUTRINOS
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oSl nucleon (cm?)

DM CONSTRAINTS FROM THE VHE SUN
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