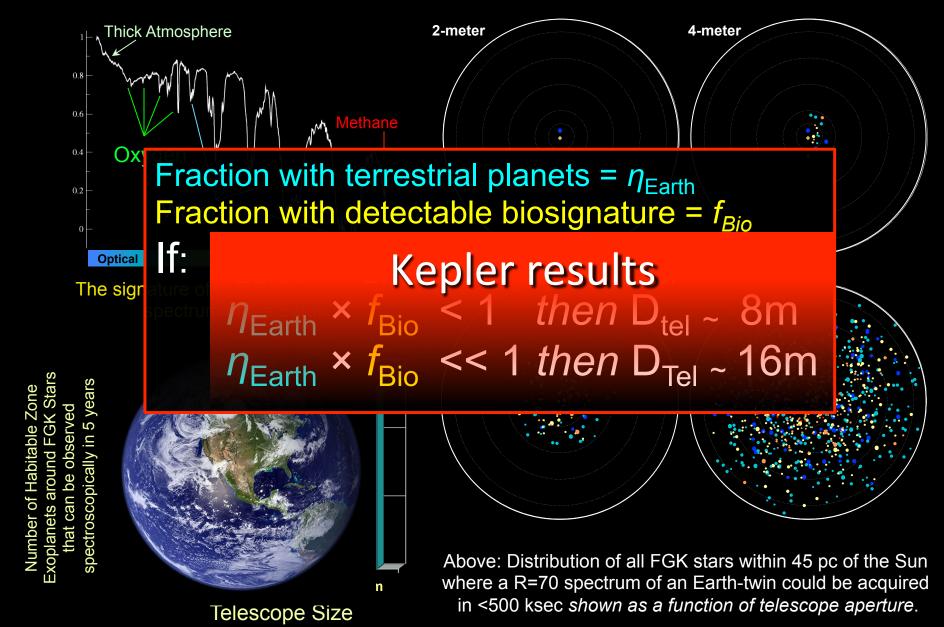
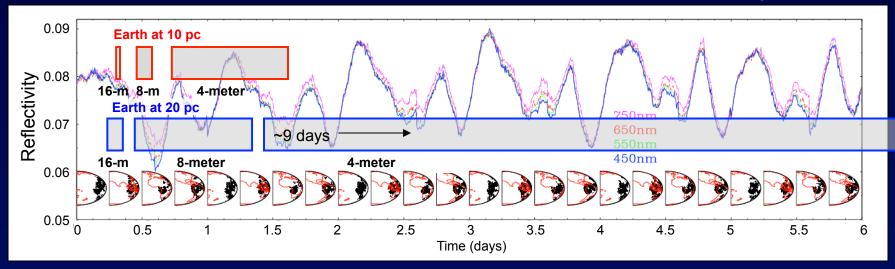
21st Century astronomers should be uniquely positioned to study "the evolution of the universe in order to relate causally the physical conditions during the Big Bang to the development of RNA and DNA"

Riccardo Giacconi, 1997

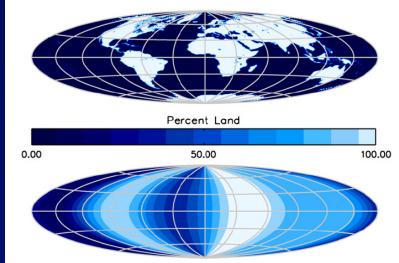

Future High-Angular UV-Optical Imaging Capability From Space

Marc Postman

"The most important experiment in modern biology is the search for extra-terrestrial life."


E. O. Wilson Evolutionary Biologist June 2, 2012

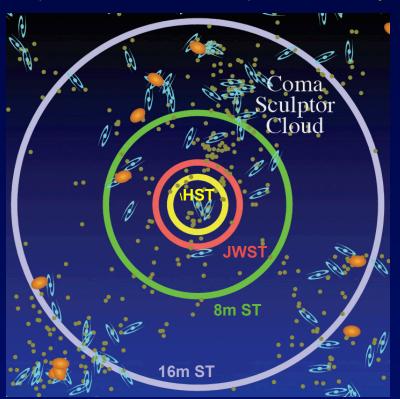
"Is there another Earth out there?"


Detecting Diurnal Photometric Variability in Exoplanets

Ford et al. 2003: Model of broadband photometric temporal variability of Earth

Require S/N ~ 20 (5% photometry) to detect ~20% temporal variations in reflectivity.

Reconstruction of Earth's land-sea ratio from disk-averaged time-resolved imaging with the EPOXI mission.


Establishing a Comprehensive Theory of Star and Galaxy Formation

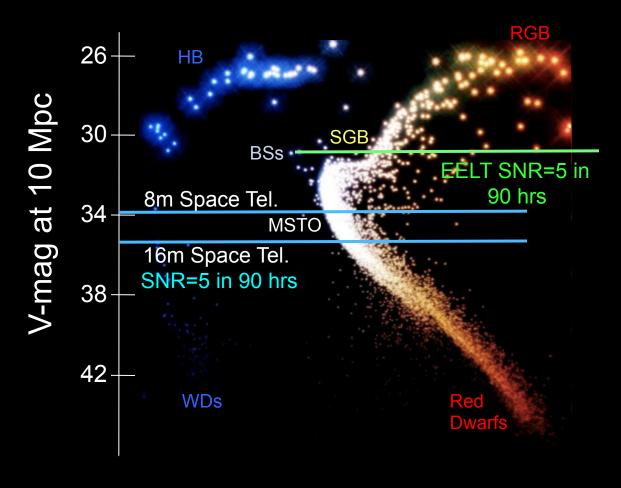
Requires Sampling Resolved Stellar Populations and Probing Gas Kinematics Across a Broad Range of Galactic Environments

A Comprehensive Understanding of Star Formation Requires Sampling Resolved Stellar Populations in a Broad Range of Galactic Environments

Map of Galaxies within 12 Mpc of Our Galaxy

Circles in the figure to the left show the distance out to which a color of an individual **solar type star** can be measured (SNR=5) with a space telescope of indicated size (in 100 hours). This enables precise ages and star formation histories to be derived.

An 8-m telescope will be able to detect individual solar-type stars in the main sequence in 140 nearby galaxies, including the closest giant Elliptical galaxy – providing an accurate age estimate for their stellar populations. A 16-m can survey ~400 nearby galaxies, including ~50 large galaxies.

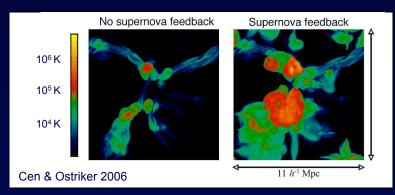

= Large Elliptical Galaxy

= Large Spiral Galaxy

= Dwarf Galaxy

This will enable a major breakthrough in our understanding of how galaxies assemble their stars. No other planned facilities will have this capability.

Direct detection of the Main Sequence Turn-Off in Galaxies up to 10 Mpc Away



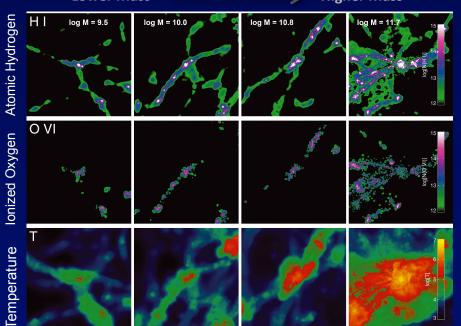
CMD image: J. Anderson

Flux scale: K. Olsen et al. 2009

Understanding the Galaxy - IGM Interplay

IGM?

Above: IGM gas temperature distribution for cosmological models with and without supernova feedback.

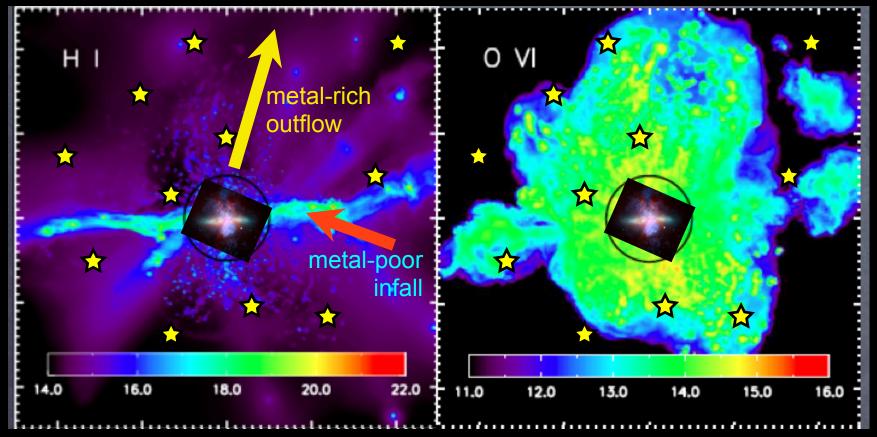

Most of the matter in the Universe is located in intergalactic space outside of galaxies.

The key questions are:

HOW IS INTERGALACTIC MATTER ASSEMBLED INTO GALAXIES?

Below: Gas ionization and Temperature Distribution vs. Galaxy Mass TO WHAT DEGREE DOES GALAXY

Lower Mass FEEDBACK REGULATE AND ENRICH THE



Understanding the answers to these questions lies at the heart of understanding galactic evolution.

WHERE AND WHEN DO THESE PROCESSES OCCUR AS A FUNCTION OF TIME?


Halo gas dissection with M82

Simulations from Shen et al. 2012

Note: FUV from 900 - 1150 Å needed to obtain reliable HI column densities from Lyman series and O VI, the most sensitive probe of highly ionized gas.

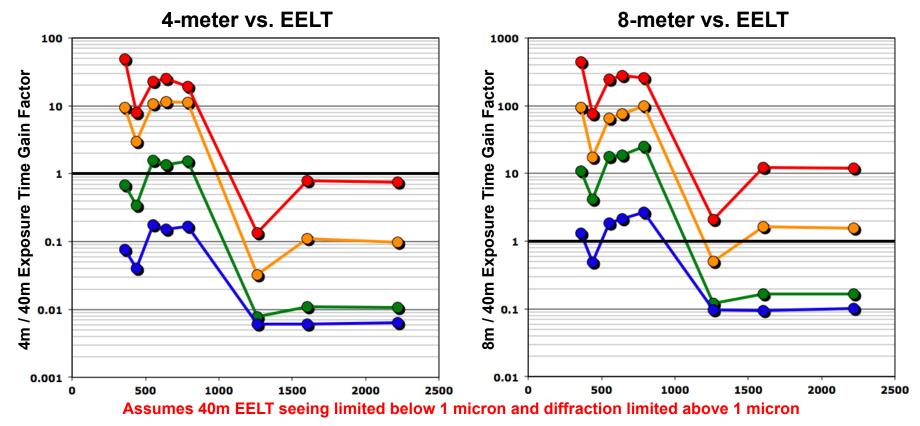
Synthesis of Approaches Enables Galaxy Evolution Studies in High-Definition

Map of Galaxies within 12 Mpc of Our Galaxy

HST/COS can in principle observe ~10 QSOs within 100 kpc of Andromeda. (small orange circle).

An 8-m can reach QSOs at $m_{FUV} \sim 22$, where there are $\sim 10 / \text{deg}^2$.

At this sky density, multiple probes of individual fully-resolved nearby galaxies becomes possible.


An 8-m can observe ~10 QSOs behind all galaxies within ~ 10 Mpc (purple line) and >1 QSO behind every galaxy out to 30 Mpc.

With such background source sampling we could dissect the gaseous halos of the same local galaxy population where we could measure the star formation histories from resolved stellar populations!

Considerations

- The science drivers for the next generation of problems require a major leap in space telescope aperture over HST.
- The unanticipated discoveries enabled by this next generation large space telescope will ensure its scientific relevance even with a decade-long timeframe from phase B to launch.
- We must be cognizant of the capabilities of upcoming facilities and instruments over the next 15 years:
 - JWST, WFIRST (possibly as a 2.4m telescope)
 - 20 30 meter ground-based optical/NIR telescopes, LSST
 - ALMA, SKA
- Astrophysics, as always, will advance from many facilities. But in the space UVOIR regime, a significant aperture increase for a narrow field observatory is required.

Exposure Time Ratio to Reach S/N = 10 (in Optical / NIR wavelengths)

- R = 5, mag = 30
- R = 100, mag = 28
- R = 2,000, mag = 26.5
- R = 20,000, mag = 24

UV access is a unique AND important capability.

At longer wavelengths, 4m space telescope has ~20x speed gain for visible broad-band imaging over EELT in the optical but no advantage in NIR at any spectral resolution (except for panoramic imaging). And if WFIRST is a 2.4m we will have a comparable panoramic imaging application covered.

An 8-meter, or larger, space telescope, however, uniquely covers key observational regimes in the UV, optical, and NIR.

A "10-meter Class" UVOIR space telescope is essential if astrophysics and exoplanet research are to have vibrant and exciting long-term futures.

Science and Telescope Requirements Summary

Science Case	Observations	Implications
Characterize at least 50 Earth- like planets around solar type stars and search for bio- signatures.	High-contrast imaging (Δ Mag>25 mag, R=5) and low-res (R= 70 - 100) spectroscopy with SNR=10 in HZ.	8m or larger aperture with stable 10^10 starlight suppression (implies high wavefront stability). Wavelength range 300 nm – 2 microns.
Develop a comprehensive model of star and galaxy formation and evolution across a broad range of environments.	Two to three color visible band photometry at SNR=5 for individual solar type stars below MSTO out to 10 Mpc.	8m or larger aperture with diffraction limited performance at 500 nm. Modest FOV (4-8 arcmin). Stable PSF.
How do galaxies and the IGM interact and what is the impact on their respective evolution?	SNR=20 high resolution (R=20,000) UV spectroscopy of QSO's down to 23 – 24 mag in the FUV regime over a broad range of environments.	High efficiency UV detectors behind 8m class space telescope. UV wavelength coverage down to at least 1000 Angstroms (and preferably 900 Angstroms).

Concluding Thoughts

- UVOIR access from space is fundamental to understanding the universe and the life within it.
- "Game Changing" science requires substantial increase in aperture.
- Enabling such a capability requires alliances, so the exoplanet and astrophysics communities need to work together to make their next generation flagship space telescope the SAME mission.
- Need to encourage commitment to funding UVO technologies. Crucially, the technology advances needed for a "10-meter class" facility benefit UVOIR missions of all scales – even SMEX (e.g., light weight optics, active wavefront control, uniform UV coatings, photon-counting detectors, giga-pixel imagers).