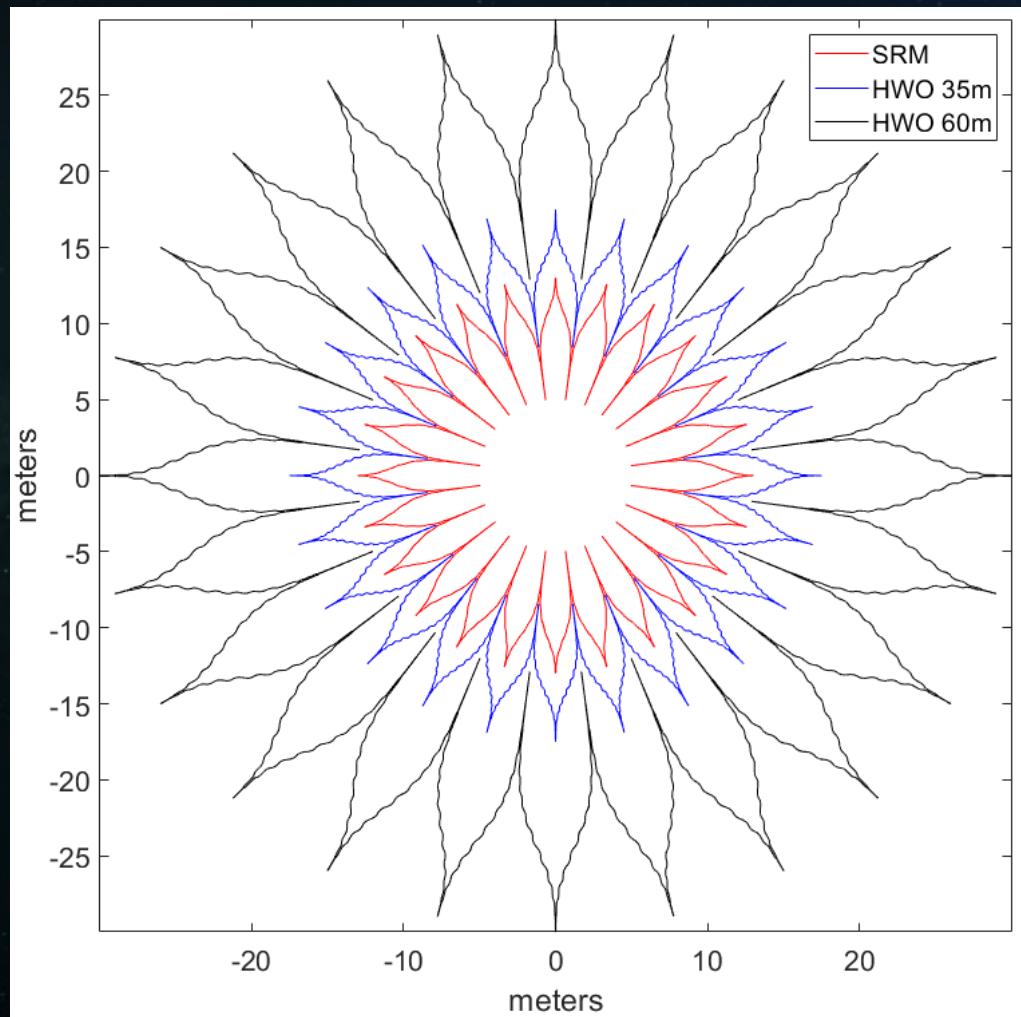


STARSHADE TECHNOLOGY STATUS: REMAINING DEVELOPMENT WORK TOWARDS HWO

Stuart Shaklan


Jet Propulsion Laboratory, California Institute of Technology

Starshade S5 Closeout Briefing
April 14, 2025

S5 BASELINE (SRM) vs. HWO STARSHADES

	S5 Baseline	HWO (UV-VIS)	HWO (VIS-NIR)
Starshade Diameter	26 m	35 m	60 m
Disk/Petals	10 m, 8 m	17 m, 9 m	28 m, 16 m
Telescope	2.4 m	6 m	6 m
Wavelength	616-800 nm	250-500 nm	500-1000 nm
IWA _{tip} (λ_{\max}/D), mas	1.5 λ/D , 103 mas	3.8 λ/D , 65 mas	1.9 λ/D , 65 mas
Fresnel Number	8.1-10.5	11.0 – 22.1	9.5-19.9
Separation	26.0 Mm	55.5 Mm	95.2 Mm
Diam/Sep ² (m/Mm ²)	0.039	0.011	0.007

S5 BASELINE VS. HWO STARSHADES

	S5 Baseline	HWO (UV-VIS)	HWO (VIS-NIR)	
Starshade Diameter	26 m	35 m	60 m	
Disk/Petals	10 m, 8 m	17 m, 9 m	28 m, 16 m	
Telescope	2.4 m	6 m	6 m	
Wavelength	616-800 nm	250-500 nm	500-1000 nm	
IWA_{tip} (λ_{\max}/D), mas	1.5 $\lambda/D = 103$ mas	3.8 $\lambda/D = 65$ mas	1.9 $\lambda/D = 65$ mas	Resolving power
Fresnel Number	8.1-10.5	11.0 – 22.1	9.5-19.9	Large F = easier
Separation	26.0 Mm	55.5 Mm	95.2 Mm	
Diam/Sep² (m/Mm²)	0.039	0.011	0.007	Scatter factor

Well-resolved IWA, **3.8 λ/D** : telescope resolves perturbations away from the planet.

Large Fresnel Number, **11-22**: easier to form a shadow, reduced sensitivity to perturbations.

D/Separation², **0.011**: Solar glint scales as edge length / distance². Smaller means fainter glint.

HWO UV-VIS and VIS-NIR have reduced sensitivities to perturbations and 3.5 – 5 times less solar glint compared to the S5 baseline.

Remaining Development Work Towards HWO

Overview

26 m Baseline (TRL 5)

Achieved:

- Optical tests 640-725 nm with deep contrast $< 10^{-10}$, limited by polarization.

- Optical Model Validation

- Formation flying demo < 1 m

- Scatter testing in the visible

- 4 m petal accuracy, thermal, deploy, stability.

- 10 m inner disk thermal, deploy, stability

35 m UV/V (TRL 5)

Needed/Desirable:

- UV tests at 250 nm with deep contrast, true broadband vis with reduced polarization.

- Scatter testing in the UV, quality control for AM etching vendor

- Already TRL 5 for a 35 m (9 m petals)

- Already TRL 5 for a 35 m (17 m disk)

60 m V/NIR (TRL 5)

Needed/Desirable:

- True broadband NIR demo

- Quality control for AM etching vendor

- Build half scale petal (8 m) with all defining features, demonstrate manufacturing, deployment cycles, thermal cycles, storage

- Build a half-scale inner disk (14 m) with all defining features, including 4 representative petals, demonstrate manufacturing, deployment cycles, thermal cycles, storage, and solar arrays.

Starlight Suppression Towards HWO

26 m Baseline (TRL 5)

Achieved:

- Better than 1e-10 contrast in air at flight Fresnel number.
- 4 wavelengths 640, 660, 700 725 nm (12.5% bandpass)
- Perturbation sensitivity study at 1e-9 – 1e-8 contrast.
- Models validated to factor of 1.25 (petal shape) and 2 (petal position)
- Limited by polarization due to small mask size

35 m UV/V (TRL 5)

Needed/Desirable:

- Optical/NUV Testbed demo (at XRCF for example) over 260 m of beam line (inner mask diam 36 mm)
- Goals: 1e-10 contrast at 250 nm, < 3e-10 peak polarization effect in the visible, and true broadband 500-740 nm (inner mask diam 47 mm).
- Secondary goals: add 1e-10 exoplanet, spin starshade, in-the-loop out of band formation flying.
- *Risk: L*
- *Effort: M (\$2M, 2 yrs)*
- *Comment: the risk is in the execution, e.g. fabricating the mask, setting up at XRCF. The physics is very low risk.*

60 m V/NIR (TRL 5)

Needed/Desirable:

- No new tests if NUV tests are carried out.
- Performance risk for NIR considered very low.
- *Comment: The combination of UV tests and already-completed visible tests span a factor of 3 in wavelength. Not expected to learn anything new in the NIR.*

Risk / Level of effort are specified as Low, Medium, High (LMH).

Petal Edge Scatter Towards HWO

26 m Baseline (TRL 5)

Achieved:

- Measured scatter of coated edges to be equivalent to mag 30 integrated over starshade
- Measured in 4 bands
- In good agreement with FDTD models.
- Tested 80 cm long thermally and environmentally distorted segments.

35 m UV/V (TRL 5)

Needed/Desirable:

- Repeat scatter measurements for UV on UV-optimized coatings.
- Quality control process for etched edges.
- Goals: scatter equiv to mag 31.
- Segment length remains ~ 1 m.
- *Risk: L*
- *Effort: L*
- *Comment: Effort involves coating design and fab, procurement and fab of edges, modification and calibration of scatterometer.*

60 m V/NIR (TRL 5)

Needed/Desirable:

- No new tests if NUV tests are carried out.
- Quality control process for etched edges
- Performance risk for NIR considered very low. Segment length remains ~ 1 m.
- *Risk: L*
- *Effort: L*
- *Comment: 60 m has a lower scatter factor than the 35 m, and coatings are generally considered to be easier.*

Formation Sensing Towards HWO

26 m Baseline (TRL 5)

Achieved:

- Through a small-scale laboratory demonstration, measured ability to determine lateral alignment to 30 cm using an out-of-band pupil plane sensing approach.
- Separate from S5 tests, the Princeton testbed demonstrated hardware-in-the-loop formation control with 10^{-10} in-band contrast. (Palacios et al 2020).

35 m UV/V (TRL 5)

Needed/Desirable:

- Design and requirements are the same. Different band is used but no performance degradation expected.
- No new tests.

60 m V/NIR (TRL 5)

Needed/Desirable:

- Design and requirements are the same. Different band is used but no performance degradation expected.
- No new tests.

Petal Shape Accuracy and Stability Towards HWO

26 m Baseline (TRL 5)

Achieved:

- Petal pre-launch shape accuracy and stability
- Petal thermal stability on-orbit
- This was with a 4 m petal, and section of a 6 m petal
- We do not have model validation of Optical Shield influence on petal shape.

35 m UV/V (TRL 5)

Needed/Desirable:

- At TRL-5 for a 9 m petal.
- No additional tests for TRL-5.

60 m V/NIR (TRL 5)

Needed/Desirable:

- Design, build, and test an 8 m petal.
- Demonstrate manufacture accuracy and thermal and shape stability, test hinge interfaces
- Medium fidelity, all defining features
- Validate models of optical shield influence on shape.
- *Risk: L*
- *Effort: H*
- *This is a repeat of all the S5 petal milestones with a larger petal.*

Inner Disk Accuracy and Stability Towards HWO

26 m Baseline (TRL 5)

Achieved:

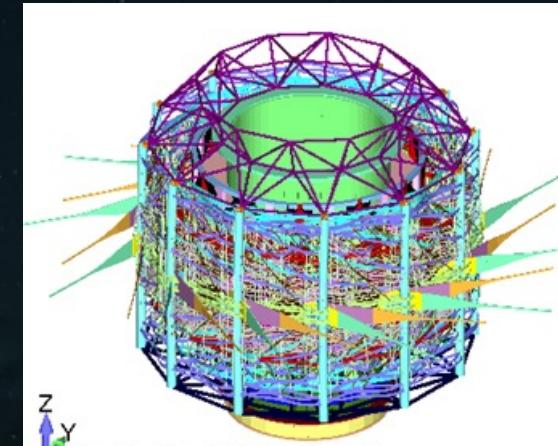
- Pre-launch inner disk accuracy and on-orbit stability
- Inner disk thermal stability on orbit.
- This was with a 10 m disk including a multi-layer optical shield but no closeout shield.
- We do not have model validation of Optical Shield influence on disk shape.

35 UV/V (TRL 5)

Needed/Desirable:

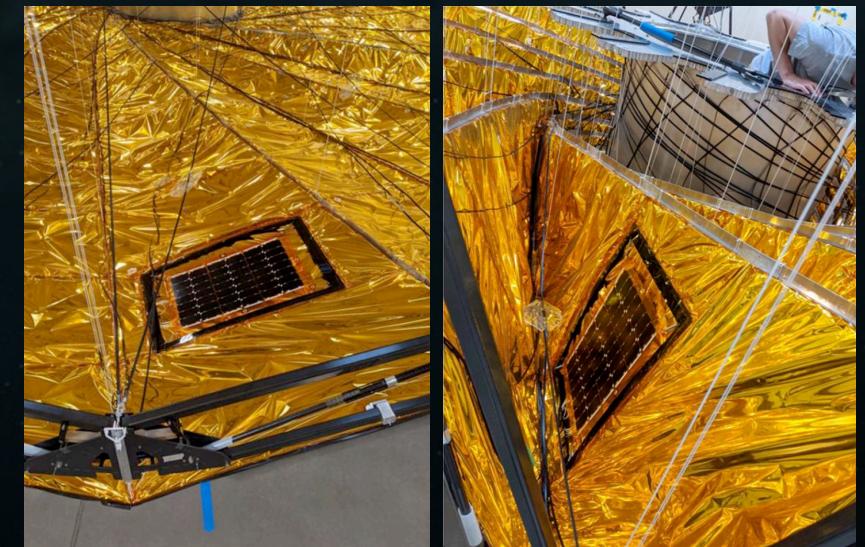
- At TRL 5 for a 17 m disk.

60 m V/NIR (TRL 5)


Needed/Desirable:

- Test a medium fidelity 14-m truss with four 8-m petals.
- Medium fidelity truss bay pair (for 14 m truss) with all defining features.
- Demonstrate manufacture accuracy and thermal and shape stability.
- Validate models of optical shield influence on shape.
- Demonstrate solar panel integration including cabling.
- *Risk: L*
- *Effort: H*
- *This is a repeat of all the S5 petal milestones with a larger petal.*

SYSTEM-LEVEL ACTIVITIES TOWARDS TRL5 FOR HWO


- **Launch loads analysis**

- S5 Starshade was analyzed for launch loads in stowed configuration with petal launch and unfurling system (PLUS)
- Repeat analyses for larger starshades

- **Solar array integration**

- Larger starshades retargeting will be propelled by solar-electric propulsion
- Put PV cells on disk optical shield
- Preliminary studies have already demonstrated that the current disk optical shield design can host PV cells (stow-deploy testing showed no degradation)
- Further design and testing is needed, especially with regards to power harnessing for DC power delivery from optical shield to hub

