Much of the emphasis in NASA's current Strategic Plans is on understanding the early universe and how it has evolved to its present state¹. As astronomical observations are pushed to cosmological distances (*z*>3) the spectral energy distributions and important lines of X-ray objects, AGN for example, will be redshifted into the EUV waveband (~100-1000 Å/0.1-0.01 keV), including for example, the Fe L-shell complex (~60-6 Å/0.2-2.0 keV) and the O VII/VIII lines (~20 Å/0.5 keV). (An analogous situation exists for *JWST* relative to *HST*.) We illustrate this effect at a redshift (*z*) of 5 for the strong O VII and VIII lines in Figure 1, which shows the *Newton-XMM* RGS spectrum of the prototypical Seyfert galaxy NGC 1068 taken from Kinkhabwala et al². A wealth of critical spectral diagnostics may be lost if future planned X-ray missions are optimized for traditional energies, i.e., > 0.3 keV (<41 Å).

This potential critical gap in performance is located at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. Fortunately, normal-incidence multilayer-grating technology performs best precisely at such wavelengths, and we propose it as a solution to this problem. Multilayer gratings have a significant advantage in the achievement of both high resolving power ($R=\lambda/\Delta\lambda$) and high effective area in one instrument, but at the disadvantage of a limited bandwidth. However, the latter may be overcome by designing wavebands to match the location of spectral lines, and then building a suite of spectrometers. The top part of Figure 1 is the predicted performance for a SMEX concept design (optimized for galactic targets)³, possible with present technology. Peak R and effective area lie in the ranges 8640–11400 and 15-60 cm², respectively. Where responses overlap, the effective area at the wavelengths of important spectral lines exceeds that of both *Chandra* and *EUVE* by an order of magnitude, and the resolving power is better by factors of 5 and 30, respectively. Most importantly, the multilayer designs can be tailored to locate the peak response of any spectrometer to any wavelength.

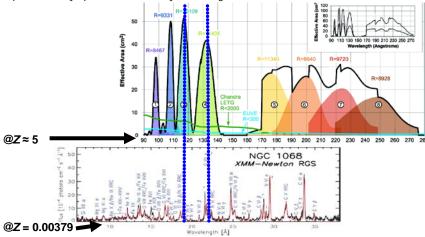


Figure 1. (bottom) XMM-Newton RGS X-ray spectrum² of prototypical Seyfert 2 galaxy NGC 1068 (z=0.00379). (top) Effective area and resolving power (R) for a SMEX concept design for a suite of 8 high-resolution multilayer-grating EUV spectrometers. The abscissae of the two figures have been offset to illustrate the scaling by a factor of (1+z), where the O VII lines fall at the peaks of two of these EUV spectrometers when the galaxy is shifted to z=5.

We have examined important issues for extragalactic observations including absorption by the galactic interstellar

medium (ISM), the flux of distant X-ray objects, and practical instrument requirements (effective area, wavelength coverage, resolving power). First, the patchy structure of the local ISM, e.g., 'Lockman hole' (\sim 15 deg²), allows extragalactic EUV observations. We find that there are 300 deg² of sky with $n_{H}<1.0x10^{20}$ cm-², which is comparable to the *XMM-Newton* AGN X-ray survey¹4 and 1300 deg² with column densities less than $1.6x10^{20}$ cm-²; these limits allow practical observations at wavelengths up to 140 Å. For comparison, the *Chandra* and *HST* deep sky surveys are \sim 1 deg² and are located in regions of low neutral hydrogen column density. Thus we conclude that sufficient solid angle is available for extragalactic EUV observations of high-*z* AGN. Second, we find that observations of important spectral lines in high-*z* AGN are practical, assuming effective areas of order 106 cm in 106 sec and with resolving powers sufficient to disentangle source components from those caused by the galactic ISM and by intervening intergalactic gas.

While multilayer-grating technology is sufficiently mature for the purposes of galactic high-resolution EUV spectroscopy, the large collecting areas required to observe distant extragalactic sources profitably requires new developments. Fortunately, at least one candidate technology exists. Nanolaminate replication, a breakthrough technology that is derived from multilayer fabrication techniques, has made rapid progress, and high-quality meter-class mirrors have been fabricated.⁵⁻⁹ We advocate extending this technology to the development of high-resolution gratings to provide the required collecting area economically.

- [1] science.nasa.gov/about-us/science-strategy/
- [2] Kinkhabwala, A., et al., Ap. J. 575, 732-746 (2002).
- [3] Kowalski, M. P., et al., Proc. SPIE 5164, 1-16 (2003).
- [4] Kowalski, M. P., et al., Proc. SPIE 7732, 77322E (2010).
- [5] Barbee, Jr., T. W., Proc. IEEE Aero. Conf. 4, 1745-1754 (2003).
- [7] MacEwen, H. A., Proc. SPIE 5166, 39-48 (2004).
- [8] Hickey, G., Barbee, Jr., T. W., Ealey, M. and Redding, D.C., Proc. SPIE 7731, (2010).
- [9] Hickey, G. S., Lih, S.-S. and Barbee, Jr., T. W., Proc. SPIE 4849, 63-76 (2003).